1×2+2×3+3×4+4×5+…n(n+1)(n+2)?急呀!!!
1个回答
展开全部
1×2+2×3+3×4+4×5+…n(n+1)
=1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…n(n+1)
=1²+1+2²+2+3²+3+4²+4+…+n²+n
=1²+2²+3²+4²+…+n²+1+2+3+4+…n
=(1/6)n(n+1)(2n+1)+(1/2)n(n+1)
=(1/6)n(n+1)(2n+1+3)
=(1/3)n(n+1)(n+2)
=1×(1+1)+2×(2+1)+3×(3+1)+4×(4+1)+…n(n+1)
=1²+1+2²+2+3²+3+4²+4+…+n²+n
=1²+2²+3²+4²+…+n²+1+2+3+4+…n
=(1/6)n(n+1)(2n+1)+(1/2)n(n+1)
=(1/6)n(n+1)(2n+1+3)
=(1/3)n(n+1)(n+2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询