已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.

(1)求证:AB=∠ACE=∠ABE;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.... (1)求证:AB=∠ACE=∠ABE;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.
展开
857201952
2011-10-05 · TA获得超过140个赞
知道答主
回答量:26
采纳率:0%
帮助的人:5.2万
展开全部
证明:(1)∵AF平分∠BAC,
∴∠CAD=∠DAB= ∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.

(2)∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合-).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
爱莉likeRK
2011-10-04 · TA获得超过274个赞
知道答主
回答量:38
采纳率:0%
帮助的人:25.8万
展开全部
(1)
证:
∵BC⊥AF
∴∠CED=∠CEA=∠AEB=90°
∵AF平分∠BAC
∴∠CAE=∠BAE
在△ACE和△ABE中
﹛∠CED=∠BAE
﹛AE=AE
﹛∠AEC=∠AEB
∴△ACE≌△ABE(ASA)
∴AC=AB
由题得
AE=ED
在△ACE和△DCE中
﹛CE=CE
﹛∠CEA=∠CED
﹛AE=DE
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD

(2)
解:
∵∠BAC=2∠MPC
∴∠MPC=∠CAE=∠BAM
∴∠F=∠MCD
【第二小题正确答案并不是这样……不过同学写的时候老师批对了= =[不要问我为什么第二小题是同学的答案]】
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
清馨又温柔的小鲤6
2011-10-06
知道答主
回答量:6
采纳率:0%
帮助的人:3.7万
展开全部
证明:(1)∵AF平分∠BAC,
∴∠CAD=∠DAB= 12∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.

(2)∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE
∴AM为BC的中垂线,
∴CM=BM.
∵EM⊥BC,
∴EM平分∠CMB.
∴∠CME=∠BME
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
刘霄辉
2011-09-27 · TA获得超过106个赞
知道答主
回答量:18
采纳率:0%
帮助的人:5.7万
展开全部
证明:∵BC⊥AF
∴∠CEA=∠AEB=∠CeD
又∵AF平分∠BAC
∴∠DAE=∠EAB
在△ACE和△ABE中,
∵∠CEA=∠AEB(已证)
AE=AE(公共边)
∠CAE=∠EAB(已证)
∴△ACe≌△ABe(ASA)
∴AB=AC则∠CAE=∠CDE

又∵∠BAC=2∠MPC

∴∠CDE=∠MPC

∵∠CDE=∠MCD+∠CMD=∠MCD+∠BMD

∠MPC=∠F+∠PMF=∠F+∠BMD

∴∠F=∠MCD
∴△ACE≌△DCE(SAS)
∴AC=DC
∴AB=CD
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
EFforever98
2011-10-05 · TA获得超过292个赞
知道答主
回答量:84
采纳率:0%
帮助的人:30万
展开全部
证明:(1)∵AF平分∠BAC,
∴∠CAD=∠DAB= 12∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.

(2)∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE
∴AM为BC的中垂线,
∴CM=BM.
∵EM⊥BC,
∴EM平分∠CMB.
∴∠CME=∠BME
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(10)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式