已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=a^x(a>0,a≠1),求证f(2x)=2f(x).g(x)

 我来答
东方翔90
2007-08-04 · TA获得超过402个赞
知道小有建树答主
回答量:210
采纳率:0%
帮助的人:247万
展开全部
f(x)+g(x)=a^x,<1式>
用-x代x得:f(-x)+g(-x)=a^(-x)
f(x)是奇函数,g(x)是偶函数,
f(-x)=-f(x),g(-x)=g(x)
-f(x)+g(x)=a^(-x),<2式>
结合1、2式可知:f(x)=[a^x-a^(-x)]/2,g(x)=[a^x+a^(-x)]/2
f(2x)=[a^(2x)-a^(-2x)]/2
f(x).g(x)=[a^x-a^(-x)]/2*[a^x+a^(-x)]/2=[a^(2x)-a^(-2x)]/4
2f(x).g(x)=[a^(2x)-a^(-2x)]/2
所以
f(2x)=2f(x).g(x)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式