用夹逼定理证明n趋向于正无穷时,a的n次方比上n的阶乘的极限为0,详细一点,初学……

25111823
推荐于2017-11-24 · TA获得超过1903个赞
知道小有建树答主
回答量:332
采纳率:0%
帮助的人:430万
展开全部
不防设a正数且r≤a<r+1,(其中r为某正整数)
那么a/(r+1)<1
则(a^n)/(n!)=(a^r/r!)*[a^(n-r)/(nPr)] 说明nPr表示从n个元素中选r个排列数
0<(a^n)/(n!)<(a^r/r!)*[a^(n-r)/(r+1)^(n-r)]=(a^r/r!)*[a/(r+1)]^(n-r)
当n→+∞时,(n-r)→+∞,(a^r/r!)*[a/(r+1)]^(n-r)→0
所以(a^n)/(n!)→0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式