已知,如图,在平行四边形ABCD中,∠ABC 平分线叫CD于E,∠ADC的平分线交AB于点F,求证BF=DE
4个回答
展开全部
解:∵四边形ABCD是平行四边形,
∴AD=CB,∠A=∠C,∠ADC=∠ABC.
又∵∠ADF=1半∠ADC
∠CBE=1半∠ABC
∴∠ADF=∠CBE.
∴△ADF≌△CBE.
∴AF=CE.
∴AB-AF=CD-CE即DE=FB.
又∵DE∥BF,
∴四边形DFBE是平行四边形.
∴BF=DE(平行四边形的对边相等)
∴AD=CB,∠A=∠C,∠ADC=∠ABC.
又∵∠ADF=1半∠ADC
∠CBE=1半∠ABC
∴∠ADF=∠CBE.
∴△ADF≌△CBE.
∴AF=CE.
∴AB-AF=CD-CE即DE=FB.
又∵DE∥BF,
∴四边形DFBE是平行四边形.
∴BF=DE(平行四边形的对边相等)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据已知条件就可以得出结果了呀。
三角形ADF与三角形CBE是全等三角形(角、边、角),
AB=CD、AF=CE
所以BF=DE .
三角形ADF与三角形CBE是全等三角形(角、边、角),
AB=CD、AF=CE
所以BF=DE .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:四边形ABCD为平行四边形,则∠ADC=∠ABC;
DF,BE分别平分∠ADC,∠ABC,则:∠EDF=∠FBE=∠CEB.
故DF平行EB;又DE平行BF,则四边形DFBE为平行四边形,得BF=DE.
DF,BE分别平分∠ADC,∠ABC,则:∠EDF=∠FBE=∠CEB.
故DF平行EB;又DE平行BF,则四边形DFBE为平行四边形,得BF=DE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询