已知正项数列﹛an﹜的前n项和sn满足2√sn=an+1,求证:﹛an﹜是等差数列
1个回答
展开全部
n=1有
S1=a1
2√ S1=a1+1
2√ a1=a1+1
4a1=a1^ 2+2a1+1
a1^ 2-2a1+1=0
(a1-1)^ 2=0
a1=1
n>1有
2√ Sn=an+1
Sn=(an+1)^ 2/4 (1)
S(n-1)=(a(n-1)+1)^ 2/4 (2)
(1)—(2)得
Sn-S(n-1)=(an+1)^ 2/4-(a(n-1)+1)^ 2/4
4an=(an+1)^ 2-(a(n-1)+1)^ 2
(a(n-1)+1)^ 2=(an-1)^ 2
又因为{an}为正数数列,
则:an-1=a(n-1)+1
an=a(n-1)+2
a1=1
﹛an﹜是首项=1公差=2的等差数列
S1=a1
2√ S1=a1+1
2√ a1=a1+1
4a1=a1^ 2+2a1+1
a1^ 2-2a1+1=0
(a1-1)^ 2=0
a1=1
n>1有
2√ Sn=an+1
Sn=(an+1)^ 2/4 (1)
S(n-1)=(a(n-1)+1)^ 2/4 (2)
(1)—(2)得
Sn-S(n-1)=(an+1)^ 2/4-(a(n-1)+1)^ 2/4
4an=(an+1)^ 2-(a(n-1)+1)^ 2
(a(n-1)+1)^ 2=(an-1)^ 2
又因为{an}为正数数列,
则:an-1=a(n-1)+1
an=a(n-1)+2
a1=1
﹛an﹜是首项=1公差=2的等差数列
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询