设A为奇数阶方阵,且|A|=1,A的转置矩阵=A的逆矩阵,求证I-A不可逆???????

lry31383
高粉答主

推荐于2016-12-01 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: 由 A' = A^-1, |A|=1, A的阶n为奇数, 得
|I-A| = |AA^-1-A|
= |AA'-A|
= |A||A'-I|
= |(A'-I)'|
= |A-I|
= |(-1)(I-A)|
= (-1)^n |I-A|
= -|I-A|
所以 |I-A| = 0
所以 I-A 不可逆.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式