求定积分,详细点,谢谢,如图
2个回答
展开全部
解:设2u=√5tanz,则du=√5sec²zdz/2
于是,原式=∫<0,arctan(2/√5)>√5secz*√5sec²zdz/2
=(5/2)∫<0,arctan(2/√5)>sec³zdz
=(5/2)∫<0,arctan(2/√5)>coszdz/(cos²z)²
=(5/2)∫<0,arctan(2/√5)>d(sinz)/(1-sin²z)²
=(5/2)∫<0,arctan(2/√5)>(1/4)[1/(1-sinz)²+1/(1-sinz)+1/(1+sinz)²+1/(1+sinz)]d(sinx)
=(5/8)[1/(1-sinz)-ln│1-sinz│-1/(1+sinz)+ln│1+sinz│]│<0,arctan(2/√5)>
=(5/8)[ln│(1+sinz)/(1-sinz)│+2sinz/(1-sin²z)]│<0,arctan(2/√5)>
=(5/8)[2ln│(1+sinz)/cosz│+2sinz/cos²z]│<0,arctan(2/√5)>
=(5/4)[ln│secz+tanz│+secz*tanz]│<0,arctan(2/√5)>
=(5/4)[ln(3/√5+2/√5)+(3/√5)(2/√5)] (tanz=2/√5,secz=3/√5)
=(5/8)ln5+3/2。
于是,原式=∫<0,arctan(2/√5)>√5secz*√5sec²zdz/2
=(5/2)∫<0,arctan(2/√5)>sec³zdz
=(5/2)∫<0,arctan(2/√5)>coszdz/(cos²z)²
=(5/2)∫<0,arctan(2/√5)>d(sinz)/(1-sin²z)²
=(5/2)∫<0,arctan(2/√5)>(1/4)[1/(1-sinz)²+1/(1-sinz)+1/(1+sinz)²+1/(1+sinz)]d(sinx)
=(5/8)[1/(1-sinz)-ln│1-sinz│-1/(1+sinz)+ln│1+sinz│]│<0,arctan(2/√5)>
=(5/8)[ln│(1+sinz)/(1-sinz)│+2sinz/(1-sin²z)]│<0,arctan(2/√5)>
=(5/8)[2ln│(1+sinz)/cosz│+2sinz/cos²z]│<0,arctan(2/√5)>
=(5/4)[ln│secz+tanz│+secz*tanz]│<0,arctan(2/√5)>
=(5/4)[ln(3/√5+2/√5)+(3/√5)(2/√5)] (tanz=2/√5,secz=3/√5)
=(5/8)ln5+3/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询