高数直线与平面问题

求过点(3,-1,3)且通过直线L:(x-2)/3=(y+1)/1=(z-2)/2的平面方程。A,B的取点是怎么选的?... 求过点(3,-1,3)且通过直线L:(x-2)/3=(y+1)/1=(z-2)/2的平面方程。
A,B的取点是怎么选的?
展开
 我来答
西域牛仔王4672747
2011-09-28 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30592 获赞数:146330
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
在直线上取点A(2,-1,2),B(5,0,4),设C(3,-1,3)
方法一:
AB=(3,1,2),AC=(1,0,1)
所以,平面的法向量 n=AB×AC=(1,-1,-1),
因此,所求的平面方程为 (x-3)-(y+1)-(z-3)=0,
即 x-y-z-1=0。

方法二:
设所求平面方程为 Ax+By+Cz+D=0,
将ABC三点坐标代入得
则 { 3A-B+3C+D=0 (1)
{2A-B+2C+D=0 (2)
{5A+4C+D=0 (3)
解得 A=-D,B=C=D,
取D=-1,则A=1,B=C=-1,
所以,所求平面方程为 x-y-z-1=0。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式