证明(1)函数f(x)=x2-2x在区间(1,正无穷)是单调增函数

急速度... 急 速度 展开
百度网友a5690bd
2011-09-29 · TA获得超过584个赞
知道小有建树答主
回答量:84
采纳率:0%
帮助的人:42.9万
展开全部
解:设 1<X1<X2 x1,x2为实数 则有
f(x2)-f(x1)=(x2²-2x2)-(x1²-2x1)
=(x2²-x1²)-2(x2-x1)
=(x2+x1)(x2-x1)-2(x2-x1)
= (x2-x1)(x2+x1-2)
∵ 1<X1<X2
∴ x2-x1>0 x2+x1-2>0
(x2-x1)(x2+x1-2)
即 f(x2)-f(x1)>0
∴ 函数f(x)=x2-2x在区间(1,+∞)是单调增函数

若有不清楚我们再讨论 ^_^
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式