一道SAT2数学题
答好了我加分iff(x)=x³-4x²-3x+2whichofthefollowingaretrue?1.thefunctionfisincreasi...
答好了我加分 if f(x)=x³-4x²-3x+2 which of the following are true?
1. the function f is increasing for x≥3
2.the equation f(x)=o has two nonreal solutions
3.f(x)≥-16 for all x≥0
答案是1和3,求解。为什么2不对?1,3又是怎么算出来的? 展开
1. the function f is increasing for x≥3
2.the equation f(x)=o has two nonreal solutions
3.f(x)≥-16 for all x≥0
答案是1和3,求解。为什么2不对?1,3又是怎么算出来的? 展开
展开全部
f(x)=x³-4x²-3x+2
f'(x)=3x²-8x-3>=0
(3x+1)(x-3)>=0
x<=-1/3或x>=3时导数>=0,即为函数递增区间,即
1. the function f is increasing for x≥3,正确.
2. 因为f(-1)=-1-4+3+2=0
x=-1是一实数解;
f(0)=2,f(2)=8-16-6+2=-12<0
所以由零点定理在(0,2)内也有一个实数解,与 two nonreal solutions,矛盾!
因为一共3个解,至少有2个实数解了.
3. x>=0
f'(x)=3x²-8x-3>=0
(3x+1)(x-3)>=0
x在[0,3),导数<0,函数递减;
(3,+无穷大),导数>0,函数递增,
所以
x=3为最小值点,此时取最小值f(3)=3³-4*3²-3*3+2=27-36-9+2=-16
从而
f(x)≥-16 for all x≥0.
正确!
答案是1和3,没错!
f'(x)=3x²-8x-3>=0
(3x+1)(x-3)>=0
x<=-1/3或x>=3时导数>=0,即为函数递增区间,即
1. the function f is increasing for x≥3,正确.
2. 因为f(-1)=-1-4+3+2=0
x=-1是一实数解;
f(0)=2,f(2)=8-16-6+2=-12<0
所以由零点定理在(0,2)内也有一个实数解,与 two nonreal solutions,矛盾!
因为一共3个解,至少有2个实数解了.
3. x>=0
f'(x)=3x²-8x-3>=0
(3x+1)(x-3)>=0
x在[0,3),导数<0,函数递减;
(3,+无穷大),导数>0,函数递增,
所以
x=3为最小值点,此时取最小值f(3)=3³-4*3²-3*3+2=27-36-9+2=-16
从而
f(x)≥-16 for all x≥0.
正确!
答案是1和3,没错!
追问
对不起,我没学过导数,能换种说法么?SAT2是不考导数的呀。
追答
f(x)=x3-4x2-3x+2 =x3-4x2-5x+2x+2
=x(x2-4x-5)+2(x+1)
=x(x+1)(x-5)+2(x+1)
=(x+1)(x2-5x+2)
令
f(x)=0
有
(x+1)(x2-5x+2)=0
x=-1或x=(5+√17)/2或x=(5-√17)/2
三个实数根,所以2错!
f(x)=(x+1)(x2-5x+2)
x+1在x>=3 递增,x2-5x+2在x>=3也递增,所以
乘积f(x)=(x+1)(x2-5x+2)在x>=3也递增!
1对!
3同上面的分析!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询