[log4(3)+log8(3)](log3(2)+log9(2))-log(1/2)(√32的4次方)
展开全部
解 [log4(3)+log8(3)](log3(2)+log9(2))-log(1/2)(√32的4次方)
=(1/2log2(3)+1/3log2(3))(1/log2(3)+1/log2(9)+log2(32*32))
=5/6log2(3)*(1/log2(3)+1/log2(9)+10)
=5/6log2(3)*(1/log2(3)+1/2log2(3)+10)
=5/6+5/12+50/6log2(3)
=17/12+25/3log2(3)
=(1/2log2(3)+1/3log2(3))(1/log2(3)+1/log2(9)+log2(32*32))
=5/6log2(3)*(1/log2(3)+1/log2(9)+10)
=5/6log2(3)*(1/log2(3)+1/2log2(3)+10)
=5/6+5/12+50/6log2(3)
=17/12+25/3log2(3)
更多追问追答
追问
答案是5/2
追答
啊 那是哪里算错了。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询