1个回答
展开全部
华师版初中数学知识内容概况知识点(1)
《数与代数》部分
1,有理数
(1)正数与负数
(2)数轴
(3)相反数
(4)绝对值
(5)有理数的大小比较
(6)有理数的运算(加,减,乘,除,乘方及其混合运算)
(7)近似数与有效数字
(8)零指数幂及负整指数幂;科学计数法
阅读材料:(1)光年与纳米; (2)10003与31000
2,数的开方
(1)平方根与立方根
(2)二次根式
(3)实数与数轴
3,整式及其运算
(1)列代数式,代数式的值
阅读材料:有趣的"3x+1问题"
(2)整式:单项式,多项式
(3)整式的加减:①同类项;②合并同类项;③去括号与添括号;④整式的加减运算
阅读材料:(1)用分离系数法进行整式的加减运算;(2)供应站的最佳位置在哪里
(4)整式的乘法:①幂的运算:同底数幂的乘法,幂的乘方,积的乘方;②整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式;③乘法公式:平方差公式,完全平方公式
(5)因式分解:提公因式法,公式法
阅读材料:(1)贾宪三角;(2)你会读吗
课题学习:面积与代数恒等式
(6)整式的除法:同底数幂的除法,单项式除以单项式
4,分式
(1)分式的概念
(2)分式的基本性质
(3)分式的运算:分式的乘除法,分式的加减法
5,方程
(1)一元一次方程:①一元一次方程的概念;②一元一次方程的解法 ;③可化为一元一次方程的分式方程
阅读材料:(1)丢番图的墓志铭;(2)2=3
(2)二元一次方程组:①二元一次方程组的概念;②二元一次方程组的解法
阅读材料:鸡兔同笼
(3)一元二次方程:①一元二次方程的概念;②一元二次方程的解法 ;③一元二次方程根的判别式;一元二次方程的根与系数之间的关系
(4)实践与探索(应用)
6,一元一次不等式
(1)不等式的认识
(2)解一元一次不等式
(3)一元一次不等式组及其解法
(4)一元一次不等式的应用
7,函数与其图像
(1)变量与函数
(2)一次函数的概念,图像及其性质
(3)反比例函数的概念,图像及其性质
(4)二次函数的概念,图像及其性质
(5)实践与探索
阅读材料:生活中的抛物线
华师版初中数学知识内容概况知识点(2)
《空间与图形》部分
1,图形的初步认识
(1)生活中的立体图形
阅读材料:欧拉公式
(2)画立体图形:①由立体图形到视图;②由视图到立体图形
(3)立体图形的表面展开图
(4)平面图形
阅读材料:七巧板
(5)最基本的图形:点和线 ①点和线;②线段的长短比较
(6)角: ①角的比较和运算;②角的特殊关系
(7)相交线:①垂线;②相交线中的角
(8)平行线:①平行线的识别;②平行线的特征
2,多边形
(1)三角形
(2)三角形的内角和,三角形的外角和
(3)瓷砖的铺设
(4)用正多边形拼地板
阅读材料:多姿多彩的图案
课题学习:图形的镶嵌
3,图形的变换
(1)平移:①图形的平移;②图形的特征
(2)旋转:①图形的旋转;②旋转的特征;③旋转对称图形;④中心对称图形
(3)轴对称:①生活中的轴对称;②轴对称的认识;③等腰三角形
阅读材料:(1)剪五角星;(2)对称拼图游戏;(3)Times and dates
(4)位似变换:①图形的放大与缩小;②画相似图形
4,命题与证明
(1)定义,命题与定理
(2)证明及其再认识
5,图形的全等
(1)图形的全等
(2)全等三角形的识别及其性质
(3)尺规作图:①画线段;②画角;③画线段;④画角平分线
6,图形的相似
(1)相似的图形及其特征
(2)相似三角形:①相似三角形的识别;②相似三角形的特征
(3)图形与坐标
7,解三角形
(1)测量
(2)勾股定理
(3)锐角三角函数
(4)解直角三角形
8,平行四边形
(1)平行四边形:①平行四边形的概念;②平行四边形的识别;③平行四边形的特征
(2)矩形:①矩形的概念;②矩形的识别;③矩形的特征
(3)菱形:①菱形的概念;②菱形的识别;③菱形的特征
(4)正方形:①正方形的概念;②正方形的识别;③正方形的特征
阅读材料:四边形的变身术
课题学习:中点四边形
9,圆
(1)圆的基本元素
(2)圆的对称性
(3)圆周角
(4)与圆有关的位置关系:①点和圆的位置关系;②直线和圆的位置关系;③圆和圆的位置关系
(5)圆中的有关计算问题:①弧长和扇形的面积;②圆锥的侧面积和全面积
华师版初中数学知识内容概况知识点(3)
《概率与统计》部分
1,统计
(1)数据的收集
(2)数据的表示:①统计图表;②这样节省图的篇幅合适吗
阅读材料:赢在哪里
(3)统计的意义:①人口普查和抽样调查;②从部分看全体
(4)平均数,中位数和众数(用计算器计算平均数)
(5)平均数,中位数和众数的使用(警惕平均数的误用)
阅读材料:"均贫富"
(6)数据的整理与初步处理:①选择合适的图表进行数据整理;②极差,方差与标准差
(7)简单的随机抽样:①简单随机抽样;②这样抽样合适吗
阅读材料:空气污染指数
(8)用样本估计总体:①抽样调查可靠吗 ②用样本估计总体
(9)数据的分析与决策:①查询数据作决策;②全面分析媒体信息;③亲自调查作决策;这样问好吗;怎样整理数据好
阅读材料:漫谈收视率
2,概率
(1)可能还是确定:①什么是可能;②不太可能是不可能吗
(2)机会的均等与不等:①确定与不确定;②成功与失败;③游戏的公平与不公平
阅读材料:搅匀对保证公平很重要
(3)在实验中寻找规律
(4)用频率估计机会的大小:①针尖触地的机会;②数字之积为奇数与偶数的机会
阅读材料:电脑键盘上的字母为何不按顺序排列
(5)模拟实验:①用替代物模拟实验;②用计算器模拟实验
课题学习:红灯与绿灯
(6)机会的大小比较
(7)概率的含义
(8)概率的预测
(9)在理论指导下决策:①考虑不同的权重;②平均要买几个才能得奖;③考试分数说明了什么
阅读材料:标准分
华师版初中数学知识内容概况知识点(4)
《课题学习》部分
七年级:
1,身份证号码与学籍号
2,图标的收集与探讨
3,图形的镶嵌
4,心率与年龄
八年级:
5,面积与代数恒等式
6,红灯与绿灯
7,高度的测量
8,通讯录的设计
九年级:
9,图形中的趣题
10,我们重视健康吗
11,中点四边形
12,改进我们的课桌椅
华师版初中数学知识内容概况
公式和法则
一,数的有关概念和运算
1,正数都大于零,负数都小于零,正数大于负数.
2,零的相反数是零
3,一个正数的绝对值是它本身;零的绝对值是零; 一个负数的绝对值是它的相反数.
4,两个负数,绝对值大的反而小.
5,有理数的运算:
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数.
(2)有理数减法法则:减去一个数,等于加上这个数的相反数.
(3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零.
不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为零,积就为零.
(4)有理数除法则:除以一个数等于乘上这个数的倒数. (注意:0不能作除数.)
有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除. 零除以任何一个不等于零的数,都得零.
(5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
(6)有理数混合运算的运算顺序规定如下:① 先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
6,(1)加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c);乘法交换律:a·b=b·a;乘法结合律:abc=a(bc);乘法分配律:a(b+c)=ab+ac.
(2)幂的运算:am·an=am+n(m,n为正整数);(m,n为正整数);(n为正整数);(m,n为正整数,m>n,a≠0),a0=1(a≠0);(a≠0,n为正整数).
(3)乘法公式:平方差公式:;完全平方公式:=
二,式的有关概念和运算
1,合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.
2,去括号法则:括号前面是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.
3,添括号法则:所添括号前面是"+"号,括到括号里的各项都不变符号;所添括号前面是"-"号,括到括号里的各项都改变符号.
4,整式加减的一般步骤可以总结为: (1) 如果有括号,那么先去括号;(2) 如果有同类项,再合并同类项.
5,二次根式的运算:;()
三,方程
用方程(组)解决实际问题的过程:问题方程(组)解答
一元二次方程的求根公式:()
四,不等式的性质
如果a>b,那么a+c>b+c,a-c>b-c;
2,如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac五,锐角三角函数
如果a,b,c分别是△ABC的∠A,∠B,∠C的对边,
那么,,,.
六,弧长和扇形面积的计算:如果弧长为l,圆心角度数为n,圆的半径为r,扇形的面积为S,则,.
华师版初中数学知识内容概况
公理和定理
一,线与角
1,两点之间,线段最短.
2,经过两点有一条直线,并且只有一条直线
3,对顶角相等
4,经过直线外或直线上一点,有且只有一条直线与已知直线垂直.
5,(1)经过已知直线外一点,有且只有一条直线与已知直线平行.
(2)如果两条直线都和第三条直线平行,那么这两条直线也平行.
6,平行线的判定:
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行.
7,平行线的特征:
(1)两直线平行,同位角相等.
(2)两直线平行,内错角相等.
(3)两直线平行,同旁内角互补.
8,角平分线的性质:角平分线上的点到这个角的两边的距离相等.
角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.
9,线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.
线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
二,三角形,多边形
10,三角形中的有关公理,定理:
(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°.
(2)三角形内角和定理:三角形的内角和等于180°.
(3)三角形的任何两边的和大于第三边
(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
11,多边形中的有关公理,定理:
(1)多边形的内角和定理:n边形的内角和等于( n-2)×180°.
(2)多边形的外角和定理:任意多边形的外角和都为360°.
(3)欧拉公式:顶点数 + 面数-棱数=2.
12,如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.
13,等腰三角形中的有关公理,定理:
(1)等腰三角形的两个底角相等.(简写成"等边对等角")
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成"等角对等边")
(3)等腰三角形的"三线合一"定理:等腰三角形的顶角平分线,底边上的中线和底边上的高互相重合,简称"三线合一".
(4)等边三角形的各个内角都相等,并且每一个内角都等于60°.
14,直角三角形的有关公理,定理:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
三,特殊四边形
15,平行四边形的性质:
(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分.
16,平行四边形的判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;
(3)两组对边分别相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
17,平行线之间的距离处处相等.
18,矩形的性质:
(1)矩形的四个角都是直角;
(2)矩形的对角线相等且互相平分.
19,矩形的判定:有三个角是直角的四边形是矩形.
20,菱形的性质:
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.
21,菱形的判定:四条边相等的四边形是菱形.
22,正方形的性质:
(1)正方形的四个角都是直角;
(2)正方形的四条边都相等;
(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.
23,正方形的判定:
(1)有一个角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形.
24,等腰梯形的判定:
(1)同一条底边上的两个内角相等的梯形是等腰梯形;
(2)两条对角线相等的梯形是等腰梯形.
25,等腰梯形的性质:
(1)等腰梯形的同一条底边上的两个内角相等;
(2)等腰梯形的两条对角线相等.
26,梯形的中位线平行于梯形的两底边,并且等于两底和的一半.
四,相似形与全等形
27,相似多边形的性质:
(1)相似多边形的对应边成比例;
(2)相似多边形的对应角相等;
(3)相似多边形的面积比等于相似比的平方.
28,相似三角形的判定:
(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;
(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.
29,全等多边形的对应边,对应角分别相等.
30,全等三角形的判定:
(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.).
(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(S.A.S.)
(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.).
(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)
(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)
五,圆
31,(1)半圆或直径所对的圆周角都相等,都等于90°(直角);(2)90°的圆周角所对的弦是圆的直径.
32,在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半; 相等的圆周角所对的弧相等.
33,不在同一条直线上的三个点确定一个圆.
34,经过半径的外端且垂直于这条半径的直线是圆的切线.
35,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.
数学思想与解题
夏建平
数学思想在解题过程中是带有方向性,规律性的指导思想,在解决数学问题中往往有统领全局的作用. 下面以一个平面几何题为例谈一些认识.
题目:如图1,AB,AC,AP是⊙O的三条弦,且∠BAP=∠CAP=60°,已知AP=1,求AB+AC的值.
解题前渗透特殊化思想
特殊和一般是矛盾着的两个方面,又统一在同一事物之中,由于特殊问题常常比较具体,且特殊问题的解决孕育着一般问题的解决.因此,特殊化是一种常用的解题思想和探索解题途径的重要方法.
要想求出"AB+AC"的值,可先猜测其值到底是多少,不妨取符合题意的特殊图形进行考察.当AP为过圆心O的一条特殊弦(即直径)时,可得特殊图形图2,连结OB,OC,易知△OAB与△AOC均为等边三角形,此时OA=AP=,所以AB+AC=+=1.
假如本题是一个填空题或选择题时,由于不需要写出解题过程,运用特殊化思想来解就很简单了.
解题中渗透整体思想
整体思想就是将问题看成一个完整的整体,注重问题的整体结构和结构改造的思维过程.对于有些数学题,若只注意它的某些孤立的个体,则较难解决,相反,先不考虑其细节,而从整体上入手,利用整体效应,反而能使问题清晰明了,使解题者直奔终点.
由解题前的猜测得"AB+AC"的值为1,再结合题意发现当AP绕点A运动时,AB与AC的值也随之变化,所以单独求出AB与AC的值后再求和不太可能,也就是说只能把"AB+AC"看作一个整体来处理,注意到∠BAP与∠CAP均为60°,不妨构造特殊的直角三角形来解题:连结PB,PC,过P作PD⊥AB,PE⊥AC,垂足分别为D,E(见图3),Rt△ADP中,有AD=AP=,Rt△AEP中,有AE=AP=;由三角形全等的识别方法"角角边推论"得△BDP≌△CEP,从而BD=CE,所以AB+AC=(AD-BD)+(AE+EC)=AD+AE=1.
解题后渗透化归思想
化归思想是指解决问题时,将原问题进行变型,由难变易,由繁变简,由未知变已知,最终归结为我们熟悉的,或易于解决或已解决的问题.解题结束后求出"AB+AC"的值为1后,再看一下已知条件,发现AP的值也为1,这里给我们一个信息,"AB+AC=AP"是否成立呢 能否把该题转化为一个比较熟悉的问题来处理呢 即证明"AB+AC=AP".于是便又有了"截长","补短"的两种解法.
"截长"法:在AP上截取AD=AC,连结BC,DC,PC(见图4),先证△ADC为等边三角形,后证△ABC≌△DPC(A.A.S.),从而AB=DP,所以,AB+AC=AD+DP=AP=1.
"补短" 法:延长CA到D,使AD=AB,连结BD,BP,BC(见图5),先证△ADB为等边三角形,后证△ABP≌△DBC,从而DC=AP,所以,AB+AC=AD+AC=DC=AP=1.
《数与代数》部分
1,有理数
(1)正数与负数
(2)数轴
(3)相反数
(4)绝对值
(5)有理数的大小比较
(6)有理数的运算(加,减,乘,除,乘方及其混合运算)
(7)近似数与有效数字
(8)零指数幂及负整指数幂;科学计数法
阅读材料:(1)光年与纳米; (2)10003与31000
2,数的开方
(1)平方根与立方根
(2)二次根式
(3)实数与数轴
3,整式及其运算
(1)列代数式,代数式的值
阅读材料:有趣的"3x+1问题"
(2)整式:单项式,多项式
(3)整式的加减:①同类项;②合并同类项;③去括号与添括号;④整式的加减运算
阅读材料:(1)用分离系数法进行整式的加减运算;(2)供应站的最佳位置在哪里
(4)整式的乘法:①幂的运算:同底数幂的乘法,幂的乘方,积的乘方;②整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式;③乘法公式:平方差公式,完全平方公式
(5)因式分解:提公因式法,公式法
阅读材料:(1)贾宪三角;(2)你会读吗
课题学习:面积与代数恒等式
(6)整式的除法:同底数幂的除法,单项式除以单项式
4,分式
(1)分式的概念
(2)分式的基本性质
(3)分式的运算:分式的乘除法,分式的加减法
5,方程
(1)一元一次方程:①一元一次方程的概念;②一元一次方程的解法 ;③可化为一元一次方程的分式方程
阅读材料:(1)丢番图的墓志铭;(2)2=3
(2)二元一次方程组:①二元一次方程组的概念;②二元一次方程组的解法
阅读材料:鸡兔同笼
(3)一元二次方程:①一元二次方程的概念;②一元二次方程的解法 ;③一元二次方程根的判别式;一元二次方程的根与系数之间的关系
(4)实践与探索(应用)
6,一元一次不等式
(1)不等式的认识
(2)解一元一次不等式
(3)一元一次不等式组及其解法
(4)一元一次不等式的应用
7,函数与其图像
(1)变量与函数
(2)一次函数的概念,图像及其性质
(3)反比例函数的概念,图像及其性质
(4)二次函数的概念,图像及其性质
(5)实践与探索
阅读材料:生活中的抛物线
华师版初中数学知识内容概况知识点(2)
《空间与图形》部分
1,图形的初步认识
(1)生活中的立体图形
阅读材料:欧拉公式
(2)画立体图形:①由立体图形到视图;②由视图到立体图形
(3)立体图形的表面展开图
(4)平面图形
阅读材料:七巧板
(5)最基本的图形:点和线 ①点和线;②线段的长短比较
(6)角: ①角的比较和运算;②角的特殊关系
(7)相交线:①垂线;②相交线中的角
(8)平行线:①平行线的识别;②平行线的特征
2,多边形
(1)三角形
(2)三角形的内角和,三角形的外角和
(3)瓷砖的铺设
(4)用正多边形拼地板
阅读材料:多姿多彩的图案
课题学习:图形的镶嵌
3,图形的变换
(1)平移:①图形的平移;②图形的特征
(2)旋转:①图形的旋转;②旋转的特征;③旋转对称图形;④中心对称图形
(3)轴对称:①生活中的轴对称;②轴对称的认识;③等腰三角形
阅读材料:(1)剪五角星;(2)对称拼图游戏;(3)Times and dates
(4)位似变换:①图形的放大与缩小;②画相似图形
4,命题与证明
(1)定义,命题与定理
(2)证明及其再认识
5,图形的全等
(1)图形的全等
(2)全等三角形的识别及其性质
(3)尺规作图:①画线段;②画角;③画线段;④画角平分线
6,图形的相似
(1)相似的图形及其特征
(2)相似三角形:①相似三角形的识别;②相似三角形的特征
(3)图形与坐标
7,解三角形
(1)测量
(2)勾股定理
(3)锐角三角函数
(4)解直角三角形
8,平行四边形
(1)平行四边形:①平行四边形的概念;②平行四边形的识别;③平行四边形的特征
(2)矩形:①矩形的概念;②矩形的识别;③矩形的特征
(3)菱形:①菱形的概念;②菱形的识别;③菱形的特征
(4)正方形:①正方形的概念;②正方形的识别;③正方形的特征
阅读材料:四边形的变身术
课题学习:中点四边形
9,圆
(1)圆的基本元素
(2)圆的对称性
(3)圆周角
(4)与圆有关的位置关系:①点和圆的位置关系;②直线和圆的位置关系;③圆和圆的位置关系
(5)圆中的有关计算问题:①弧长和扇形的面积;②圆锥的侧面积和全面积
华师版初中数学知识内容概况知识点(3)
《概率与统计》部分
1,统计
(1)数据的收集
(2)数据的表示:①统计图表;②这样节省图的篇幅合适吗
阅读材料:赢在哪里
(3)统计的意义:①人口普查和抽样调查;②从部分看全体
(4)平均数,中位数和众数(用计算器计算平均数)
(5)平均数,中位数和众数的使用(警惕平均数的误用)
阅读材料:"均贫富"
(6)数据的整理与初步处理:①选择合适的图表进行数据整理;②极差,方差与标准差
(7)简单的随机抽样:①简单随机抽样;②这样抽样合适吗
阅读材料:空气污染指数
(8)用样本估计总体:①抽样调查可靠吗 ②用样本估计总体
(9)数据的分析与决策:①查询数据作决策;②全面分析媒体信息;③亲自调查作决策;这样问好吗;怎样整理数据好
阅读材料:漫谈收视率
2,概率
(1)可能还是确定:①什么是可能;②不太可能是不可能吗
(2)机会的均等与不等:①确定与不确定;②成功与失败;③游戏的公平与不公平
阅读材料:搅匀对保证公平很重要
(3)在实验中寻找规律
(4)用频率估计机会的大小:①针尖触地的机会;②数字之积为奇数与偶数的机会
阅读材料:电脑键盘上的字母为何不按顺序排列
(5)模拟实验:①用替代物模拟实验;②用计算器模拟实验
课题学习:红灯与绿灯
(6)机会的大小比较
(7)概率的含义
(8)概率的预测
(9)在理论指导下决策:①考虑不同的权重;②平均要买几个才能得奖;③考试分数说明了什么
阅读材料:标准分
华师版初中数学知识内容概况知识点(4)
《课题学习》部分
七年级:
1,身份证号码与学籍号
2,图标的收集与探讨
3,图形的镶嵌
4,心率与年龄
八年级:
5,面积与代数恒等式
6,红灯与绿灯
7,高度的测量
8,通讯录的设计
九年级:
9,图形中的趣题
10,我们重视健康吗
11,中点四边形
12,改进我们的课桌椅
华师版初中数学知识内容概况
公式和法则
一,数的有关概念和运算
1,正数都大于零,负数都小于零,正数大于负数.
2,零的相反数是零
3,一个正数的绝对值是它本身;零的绝对值是零; 一个负数的绝对值是它的相反数.
4,两个负数,绝对值大的反而小.
5,有理数的运算:
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数.
(2)有理数减法法则:减去一个数,等于加上这个数的相反数.
(3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零.
不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为零,积就为零.
(4)有理数除法则:除以一个数等于乘上这个数的倒数. (注意:0不能作除数.)
有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除. 零除以任何一个不等于零的数,都得零.
(5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
(6)有理数混合运算的运算顺序规定如下:① 先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
6,(1)加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c);乘法交换律:a·b=b·a;乘法结合律:abc=a(bc);乘法分配律:a(b+c)=ab+ac.
(2)幂的运算:am·an=am+n(m,n为正整数);(m,n为正整数);(n为正整数);(m,n为正整数,m>n,a≠0),a0=1(a≠0);(a≠0,n为正整数).
(3)乘法公式:平方差公式:;完全平方公式:=
二,式的有关概念和运算
1,合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.
2,去括号法则:括号前面是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.
3,添括号法则:所添括号前面是"+"号,括到括号里的各项都不变符号;所添括号前面是"-"号,括到括号里的各项都改变符号.
4,整式加减的一般步骤可以总结为: (1) 如果有括号,那么先去括号;(2) 如果有同类项,再合并同类项.
5,二次根式的运算:;()
三,方程
用方程(组)解决实际问题的过程:问题方程(组)解答
一元二次方程的求根公式:()
四,不等式的性质
如果a>b,那么a+c>b+c,a-c>b-c;
2,如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac五,锐角三角函数
如果a,b,c分别是△ABC的∠A,∠B,∠C的对边,
那么,,,.
六,弧长和扇形面积的计算:如果弧长为l,圆心角度数为n,圆的半径为r,扇形的面积为S,则,.
华师版初中数学知识内容概况
公理和定理
一,线与角
1,两点之间,线段最短.
2,经过两点有一条直线,并且只有一条直线
3,对顶角相等
4,经过直线外或直线上一点,有且只有一条直线与已知直线垂直.
5,(1)经过已知直线外一点,有且只有一条直线与已知直线平行.
(2)如果两条直线都和第三条直线平行,那么这两条直线也平行.
6,平行线的判定:
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行.
7,平行线的特征:
(1)两直线平行,同位角相等.
(2)两直线平行,内错角相等.
(3)两直线平行,同旁内角互补.
8,角平分线的性质:角平分线上的点到这个角的两边的距离相等.
角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.
9,线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.
线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
二,三角形,多边形
10,三角形中的有关公理,定理:
(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°.
(2)三角形内角和定理:三角形的内角和等于180°.
(3)三角形的任何两边的和大于第三边
(4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半.
11,多边形中的有关公理,定理:
(1)多边形的内角和定理:n边形的内角和等于( n-2)×180°.
(2)多边形的外角和定理:任意多边形的外角和都为360°.
(3)欧拉公式:顶点数 + 面数-棱数=2.
12,如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.
13,等腰三角形中的有关公理,定理:
(1)等腰三角形的两个底角相等.(简写成"等边对等角")
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成"等角对等边")
(3)等腰三角形的"三线合一"定理:等腰三角形的顶角平分线,底边上的中线和底边上的高互相重合,简称"三线合一".
(4)等边三角形的各个内角都相等,并且每一个内角都等于60°.
14,直角三角形的有关公理,定理:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
三,特殊四边形
15,平行四边形的性质:
(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分.
16,平行四边形的判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;
(3)两组对边分别相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
17,平行线之间的距离处处相等.
18,矩形的性质:
(1)矩形的四个角都是直角;
(2)矩形的对角线相等且互相平分.
19,矩形的判定:有三个角是直角的四边形是矩形.
20,菱形的性质:
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.
21,菱形的判定:四条边相等的四边形是菱形.
22,正方形的性质:
(1)正方形的四个角都是直角;
(2)正方形的四条边都相等;
(3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.
23,正方形的判定:
(1)有一个角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形.
24,等腰梯形的判定:
(1)同一条底边上的两个内角相等的梯形是等腰梯形;
(2)两条对角线相等的梯形是等腰梯形.
25,等腰梯形的性质:
(1)等腰梯形的同一条底边上的两个内角相等;
(2)等腰梯形的两条对角线相等.
26,梯形的中位线平行于梯形的两底边,并且等于两底和的一半.
四,相似形与全等形
27,相似多边形的性质:
(1)相似多边形的对应边成比例;
(2)相似多边形的对应角相等;
(3)相似多边形的面积比等于相似比的平方.
28,相似三角形的判定:
(1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;
(2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;
(3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.
29,全等多边形的对应边,对应角分别相等.
30,全等三角形的判定:
(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.).
(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(S.A.S.)
(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.).
(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.)
(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)
五,圆
31,(1)半圆或直径所对的圆周角都相等,都等于90°(直角);(2)90°的圆周角所对的弦是圆的直径.
32,在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半; 相等的圆周角所对的弧相等.
33,不在同一条直线上的三个点确定一个圆.
34,经过半径的外端且垂直于这条半径的直线是圆的切线.
35,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.
数学思想与解题
夏建平
数学思想在解题过程中是带有方向性,规律性的指导思想,在解决数学问题中往往有统领全局的作用. 下面以一个平面几何题为例谈一些认识.
题目:如图1,AB,AC,AP是⊙O的三条弦,且∠BAP=∠CAP=60°,已知AP=1,求AB+AC的值.
解题前渗透特殊化思想
特殊和一般是矛盾着的两个方面,又统一在同一事物之中,由于特殊问题常常比较具体,且特殊问题的解决孕育着一般问题的解决.因此,特殊化是一种常用的解题思想和探索解题途径的重要方法.
要想求出"AB+AC"的值,可先猜测其值到底是多少,不妨取符合题意的特殊图形进行考察.当AP为过圆心O的一条特殊弦(即直径)时,可得特殊图形图2,连结OB,OC,易知△OAB与△AOC均为等边三角形,此时OA=AP=,所以AB+AC=+=1.
假如本题是一个填空题或选择题时,由于不需要写出解题过程,运用特殊化思想来解就很简单了.
解题中渗透整体思想
整体思想就是将问题看成一个完整的整体,注重问题的整体结构和结构改造的思维过程.对于有些数学题,若只注意它的某些孤立的个体,则较难解决,相反,先不考虑其细节,而从整体上入手,利用整体效应,反而能使问题清晰明了,使解题者直奔终点.
由解题前的猜测得"AB+AC"的值为1,再结合题意发现当AP绕点A运动时,AB与AC的值也随之变化,所以单独求出AB与AC的值后再求和不太可能,也就是说只能把"AB+AC"看作一个整体来处理,注意到∠BAP与∠CAP均为60°,不妨构造特殊的直角三角形来解题:连结PB,PC,过P作PD⊥AB,PE⊥AC,垂足分别为D,E(见图3),Rt△ADP中,有AD=AP=,Rt△AEP中,有AE=AP=;由三角形全等的识别方法"角角边推论"得△BDP≌△CEP,从而BD=CE,所以AB+AC=(AD-BD)+(AE+EC)=AD+AE=1.
解题后渗透化归思想
化归思想是指解决问题时,将原问题进行变型,由难变易,由繁变简,由未知变已知,最终归结为我们熟悉的,或易于解决或已解决的问题.解题结束后求出"AB+AC"的值为1后,再看一下已知条件,发现AP的值也为1,这里给我们一个信息,"AB+AC=AP"是否成立呢 能否把该题转化为一个比较熟悉的问题来处理呢 即证明"AB+AC=AP".于是便又有了"截长","补短"的两种解法.
"截长"法:在AP上截取AD=AC,连结BC,DC,PC(见图4),先证△ADC为等边三角形,后证△ABC≌△DPC(A.A.S.),从而AB=DP,所以,AB+AC=AD+DP=AP=1.
"补短" 法:延长CA到D,使AD=AB,连结BD,BP,BC(见图5),先证△ADB为等边三角形,后证△ABP≌△DBC,从而DC=AP,所以,AB+AC=AD+AC=DC=AP=1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |