1 、1/1×2 +1/2×3 +1/3×4 +1/4×5+……1/2010×2011 2 、0.2¹º×(-5)¹¹+1-(4/5
1、1/1×2+1/2×3+1/3×4+1/4×5+……1/2010×20112、0.2¹º×(-5)¹¹+1-(4/5)...
1 、1/1×2 +1/2×3 +1/3×4 +1/4×5+……1/2010×2011
2 、0.2¹º×(-5)¹¹+1-(4/5)²
3 、(1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2009)×(1/2+1/3+···+1/2008)
4 、现有一列数a1,a2,a3,•••,a97,a98,a99,a100
其中a3=9,a7=-7,a98=-1,且满足任意相邻三个数的和为同一个常数,求a1+a2+a3+•••+a99+a100的值 展开
2 、0.2¹º×(-5)¹¹+1-(4/5)²
3 、(1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2009)×(1/2+1/3+···+1/2008)
4 、现有一列数a1,a2,a3,•••,a97,a98,a99,a100
其中a3=9,a7=-7,a98=-1,且满足任意相邻三个数的和为同一个常数,求a1+a2+a3+•••+a99+a100的值 展开
3个回答
展开全部
1-1/2+1/2-1/3+……+1/2010-1/2011=2010/2011
0.2¹º×(-5)¹¹+1-(4/5)²=-5+1-16/25=5又9/25
(1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2009)×(1/2+1/3+···+1/2008)=(1+1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)+(1+1/2+1/3+···+1/2009)=1/2009
满足任意相邻三个数的和为同一个常数,
a1=a4=a7=……=a100=-7
a2=a5=a8=……=a98=-1
a3=a6=a9=……=a99=9
a1+a2+a3+•••+a99+a100=33*(9-1-7)+a1=33-7=26
0.2¹º×(-5)¹¹+1-(4/5)²=-5+1-16/25=5又9/25
(1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2009)×(1/2+1/3+···+1/2008)=(1+1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2008)-(1+1/2+1/3+···+1/2009)×(1+1/2+1/3+···+1/2008)+(1+1/2+1/3+···+1/2009)=1/2009
满足任意相邻三个数的和为同一个常数,
a1=a4=a7=……=a100=-7
a2=a5=a8=……=a98=-1
a3=a6=a9=……=a99=9
a1+a2+a3+•••+a99+a100=33*(9-1-7)+a1=33-7=26
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询