已知函数f(x)=in(x+1/x-1).
求函数的定义域,并证明f(x)=in(x+1/x-1)在定义域上是奇函数对于X∈【2,6】,f(x)=in(x+1/x-1)>in(m/(x-1)(7-x))恒成立,求实...
求函数的定义域,并证明f(x)=in(x+1/x-1)在定义域上是奇函数
对于X∈【2,6】,f(x)=in(x+1/x-1)>in(m/(x-1)(7-x))恒成立,求实数m的取值范围
当n∈N时,试比较f(2)+f(4)+f(6)+·····+f(2n)与2n+2n^2的大小关系 展开
对于X∈【2,6】,f(x)=in(x+1/x-1)>in(m/(x-1)(7-x))恒成立,求实数m的取值范围
当n∈N时,试比较f(2)+f(4)+f(6)+·····+f(2n)与2n+2n^2的大小关系 展开
1个回答
展开全部
解:1.由题意可知(x+1)/(x-1)>0,解得x>1或x<-1
则函数的定义域为{ x | x>1或x<-1}
2.对于定义域内任意实数x,都有:
f(-x)=ln[(-x+1)/(-x-1)]
=ln[(x-1)/(x+1)]
=-ln[(x+1)/(x-1)]
=-f(x)
所以f(x)=ln[(x+1)/(x-1)]在定义域上是奇函数
3.因为f(x)=ln[(x+1)/(x-1)]=ln[1+2/(x-1)]
所以函数f(x)在(-∞,-1)上是减函数,在(1,+∞)上也是减函数
对于X∈【2,6】,f(x)=[(x+1)/(x-1)]>ln{m/[(x+1)*(7-x)]}恒成立
则(x+1)/(x-1)>m/[(x+1)*(7-x)]
因为x+1>0,所以上式可化为:
1/(x-1)>m/(7-x)
即1/(x-1) -m/(7-x)>0
通分得:
(7-x-mx+m)/[(x-1)(7-x)]>0
即[(-x+1)m+7-x]/[(x-1)(7-x)]>0
因为x-1>0且7-x>0
所以上式可化为:
(-x+1)m+7-x>0
即(1-x)m>x-7
两边同乘以-1,可得:
(x-1)m>x-7
则m>(x-7)/(x-1) (*)
又(x-7)/(x-1)=1-6/(x-1)且2≤x≤6,
则当x=2时,(x-7)/(x-1)有极小值-5
当x=6时,(x-7)/(x-1)有极大值-1/5
要使(*)式对于任意X∈【2,6】都成立,须使得:m>-1/5
所以m的取值范围是:m>-1/5
4.因为f(x)=ln[(x+1)/(x-1)]=ln(x+1)-ln(x-1)
所以f(2)+f(4)+f(6)+·····+f(2n)
=(ln3-ln1) +(ln5-ln3)+(ln7-ln5)+...+[ln(2n-1)-ln(2n-3)]+[ln(2n+1)-ln(2n-1)]
=ln(2n+1)
令g(n)=ln(2n+1) -(2n+2n²)
则g'(n)=2/(2n+1) -(2+4n),其中n∈N
=[2/(2n+1)]*[1-(2n+1)²]
因为n∈N,所以2n+1>0且1-(2n+1)²<0
则g'(n)<0
所以函数g(n)在n∈N上是减函数
则当n=1时,g(n)有最大值ln3-4<0
所以对于任意n∈N,g(n)<0
即ln(2n+1) -(2n+2n²)<0
ln(2n+1) <(2n+2n²)
所以当n∈N时,f(2)+f(4)+f(6)+·····+f(2n)<2n+2n²
则函数的定义域为{ x | x>1或x<-1}
2.对于定义域内任意实数x,都有:
f(-x)=ln[(-x+1)/(-x-1)]
=ln[(x-1)/(x+1)]
=-ln[(x+1)/(x-1)]
=-f(x)
所以f(x)=ln[(x+1)/(x-1)]在定义域上是奇函数
3.因为f(x)=ln[(x+1)/(x-1)]=ln[1+2/(x-1)]
所以函数f(x)在(-∞,-1)上是减函数,在(1,+∞)上也是减函数
对于X∈【2,6】,f(x)=[(x+1)/(x-1)]>ln{m/[(x+1)*(7-x)]}恒成立
则(x+1)/(x-1)>m/[(x+1)*(7-x)]
因为x+1>0,所以上式可化为:
1/(x-1)>m/(7-x)
即1/(x-1) -m/(7-x)>0
通分得:
(7-x-mx+m)/[(x-1)(7-x)]>0
即[(-x+1)m+7-x]/[(x-1)(7-x)]>0
因为x-1>0且7-x>0
所以上式可化为:
(-x+1)m+7-x>0
即(1-x)m>x-7
两边同乘以-1,可得:
(x-1)m>x-7
则m>(x-7)/(x-1) (*)
又(x-7)/(x-1)=1-6/(x-1)且2≤x≤6,
则当x=2时,(x-7)/(x-1)有极小值-5
当x=6时,(x-7)/(x-1)有极大值-1/5
要使(*)式对于任意X∈【2,6】都成立,须使得:m>-1/5
所以m的取值范围是:m>-1/5
4.因为f(x)=ln[(x+1)/(x-1)]=ln(x+1)-ln(x-1)
所以f(2)+f(4)+f(6)+·····+f(2n)
=(ln3-ln1) +(ln5-ln3)+(ln7-ln5)+...+[ln(2n-1)-ln(2n-3)]+[ln(2n+1)-ln(2n-1)]
=ln(2n+1)
令g(n)=ln(2n+1) -(2n+2n²)
则g'(n)=2/(2n+1) -(2+4n),其中n∈N
=[2/(2n+1)]*[1-(2n+1)²]
因为n∈N,所以2n+1>0且1-(2n+1)²<0
则g'(n)<0
所以函数g(n)在n∈N上是减函数
则当n=1时,g(n)有最大值ln3-4<0
所以对于任意n∈N,g(n)<0
即ln(2n+1) -(2n+2n²)<0
ln(2n+1) <(2n+2n²)
所以当n∈N时,f(2)+f(4)+f(6)+·····+f(2n)<2n+2n²
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |