请问如何证明根号5,根号3是无理数?

谢谢!!... 谢谢!! 展开
简可
高赞答主

推荐于2016-12-01 · 一个有才华的人
知道大有可为答主
回答量:1.8万
采纳率:42%
帮助的人:1.7亿
展开全部
反证法:
假设结论不成立(接下来用a表示根号3,因为不好打),即a为有理数,
那么存在正整数p和q(p,q无公因子,或称互质),使得a=p/q(有理数的性质),两边平方,得到
p^2=3*q^2,
接下来分析,(具体过程可以有多种,但是都是从公因子3入手,引出矛盾)
因为等号右边有因子3,且3为质数,因此p一定是3的倍数,设p=3r,代入等式并约分得到,
3*r^2=q^2
同理,q也一定是3的倍数,于是p、q均为3的倍数,与p、q互质矛盾。
故有反证法的原理,知a为无理数

假设 根号5是有理数,
设 根号5=p/q,
其中,p,q是正的自然数且互质。
则由p^2=5q^2知
p^2可以被5整除,所以p也能被5 整除(反证法可以证得:如果p不能被5整除,则p^2也不能被5整除,得证)
设p=5*n(n是正的自然数)
则5q^2=p^2=25n^2
这样 q^2也能被5整除,q也能被5整除
因此p与q有公因子5。
这与p,q互质相矛盾
从而 证明了根号5为无理数。

参考资料: 百度知道

wjzld
2007-08-06 · TA获得超过290个赞
知道小有建树答主
回答量:270
采纳率:0%
帮助的人:174万
展开全部
反证法:
假设结论不成立(接下来用a表示根号3,因为不好打),即a为有理数,
那么存在正整数p和q(p,q无公因子,或称互质),使得a=p/q(有理数的性质),两边平方,得到
p^2=3*q^2,
接下来分析,(具体过程可以有多种,但是都是从公因子3入手,引出矛盾)
因为等号右边有因子3,且3为质数,因此p一定是3的倍数,设p=3r,代入等式并约分得到,
3*r^2=q^2
同理,q也一定是3的倍数,于是p、q均为3的倍数,与p、q互质矛盾。
故有反证法的原理,知a为无理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
装潢走心
2019-08-30 · TA获得超过3608个赞
知道大有可为答主
回答量:3005
采纳率:33%
帮助的人:423万
展开全部
那是
要是什么都查不出来
还叫百度吗

那上的信息可多
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式