已知函数f(x)=ax2+bx+1(a,b为实数).1当函数f(x)的图像经过(-1,0),且方程f(x)=0有且只有一个根
1.求f(x)的表达式2.在1的条件下,当x属于【-2,2)时,g(x)=f(x)-kx是单调函数,求实数k的取值范围...
1.求f(x)的表达式
2.在1的条件下,当x属于【-2,2)时,g(x)=f(x)-kx是单调函数,求实数k的取值范围 展开
2.在1的条件下,当x属于【-2,2)时,g(x)=f(x)-kx是单调函数,求实数k的取值范围 展开
2个回答
展开全部
题目没有说a不能为0.所以你必须先把这个情况写下来。
当a=0,则f(x)=bx+1,所以0=-b+1,所以b=1.所以函数为f(x)=x+1.________(1)
(1)是我们的一个答案;
当a≠0,函数图像是开口向上(a>0)或开口向下(a<0)的抛物线,
且与x轴相切。切点就是(-1,0)。即0=a-b+1,————————(2)
方程的判别式⊿=0.即b²-4a=0._______________(3)
由(2)(3)可以得到a与b的值。
a=1,b=2.函数为:f(x)=x²+2x+1.————————(4)
第一小题答:f(x)=x+1或f(x)=x²+2x+1.
第二小题:
当f(x)=x+1时,则g(x)=(1-k)x+1.
因为g(x)单调,∴1-k可以为任意数值,即k∈R;
当f(x)=x²+2x+1时,g(x)=x²+﹙2-k﹚x+1,这也是开口向上的抛物线。它的对称轴为x=k/2-1.
此时,如果对称轴在直线x=-2的左边,即k/2-1≦-2,即k≦-2时,g(x)在区间[-2,2]上为单调函数(增);
此时如果对称轴在直线x=2的右边,即k/2-1≧2,即k≧6时,g(x)在区间[-2,2]上为单调函数(减函数)。
所以,k≦-2或k≧6时,函数g(x)为单调函数。
总题答案:当a=0时,无论k为何值,函数g(x)都是单调函数;当a=1时,函数g(x)为单调函数的条件是k≦-2或k≧6。
附注:我这是“函授教学”,说的详细且显得罗嗦了。你在高考答题时,可以尽量简洁一些。另,千万 千万注意二次项的系数,一定要把系数为0的情况分析进去。这往往是高考题的陷阱。
当a=0,则f(x)=bx+1,所以0=-b+1,所以b=1.所以函数为f(x)=x+1.________(1)
(1)是我们的一个答案;
当a≠0,函数图像是开口向上(a>0)或开口向下(a<0)的抛物线,
且与x轴相切。切点就是(-1,0)。即0=a-b+1,————————(2)
方程的判别式⊿=0.即b²-4a=0._______________(3)
由(2)(3)可以得到a与b的值。
a=1,b=2.函数为:f(x)=x²+2x+1.————————(4)
第一小题答:f(x)=x+1或f(x)=x²+2x+1.
第二小题:
当f(x)=x+1时,则g(x)=(1-k)x+1.
因为g(x)单调,∴1-k可以为任意数值,即k∈R;
当f(x)=x²+2x+1时,g(x)=x²+﹙2-k﹚x+1,这也是开口向上的抛物线。它的对称轴为x=k/2-1.
此时,如果对称轴在直线x=-2的左边,即k/2-1≦-2,即k≦-2时,g(x)在区间[-2,2]上为单调函数(增);
此时如果对称轴在直线x=2的右边,即k/2-1≧2,即k≧6时,g(x)在区间[-2,2]上为单调函数(减函数)。
所以,k≦-2或k≧6时,函数g(x)为单调函数。
总题答案:当a=0时,无论k为何值,函数g(x)都是单调函数;当a=1时,函数g(x)为单调函数的条件是k≦-2或k≧6。
附注:我这是“函授教学”,说的详细且显得罗嗦了。你在高考答题时,可以尽量简洁一些。另,千万 千万注意二次项的系数,一定要把系数为0的情况分析进去。这往往是高考题的陷阱。
追问
为什么 当f(x)=x²+2x+1时,g(x)=x²+﹙2-k﹚x+1??
追答
题目不是说:f(x)-kx才是新函数g(x)吗?
f(x)-kx=啥?你自己一算就可以知道啦。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询