如图,等腰RT△ABC中,∠ABC=90°,AB=AC,点A、C分别在y轴、x轴上,且点A、点C的坐标分别为A(0,2)、(5,0
(1)如图1,求点B的坐标;(2)如图2,点P是第一、第三象限的平分线PQ上的一动点,是否存在点P,使得△PAC的面积是12,若存在,求出P点的坐标,若不存在,说明理由;...
(1)如图1,求点B的坐标;
(2)如图2,点P是第一、第三象限的平分线PQ上的一动点,是否存在点P,使得△PAC的面积是12,若存在,求出P点的坐标,若不存在,说明理由;
(3)如图3,BF在△ABC内部且过B点的任意一条射线,分别过A作AM⊥BF于M点,过C作NC⊥BF于N点,写出BN-NC与AM之间的数量关系,并证明你的结论 展开
(2)如图2,点P是第一、第三象限的平分线PQ上的一动点,是否存在点P,使得△PAC的面积是12,若存在,求出P点的坐标,若不存在,说明理由;
(3)如图3,BF在△ABC内部且过B点的任意一条射线,分别过A作AM⊥BF于M点,过C作NC⊥BF于N点,写出BN-NC与AM之间的数量关系,并证明你的结论 展开
展开全部
(1)解:作BD垂直Y轴于D.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC.则⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S⊿PAC=S⊿POA+S⊿POC-S⊿AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n), n<0.S⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.故⊿AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,即BN-BH=2AM, BN-NC=2AM.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC.则⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S⊿PAC=S⊿POA+S⊿POC-S⊿AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n), n<0.S⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.故⊿AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,即BN-BH=2AM, BN-NC=2AM.
展开全部
(1)解:作BD垂直Y轴于D.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC.则⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S⊿PAC=S⊿POA+S⊿POC-S⊿AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n), n<0.S⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.故⊿AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,即BN-BH=2AM, BN-NC=2AM.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC.则⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S⊿PAC=S⊿POA+S⊿POC-S⊿AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n), n<0.S⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.故⊿AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,即BN-BH=2AM, BN-NC=2AM.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
等腰RT△ABC中,∠ABC=90°,AB=AC
这句话看看哪里错了
这句话看看哪里错了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哎╮(╯▽╰)╭,三角形也不会打 △
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-07
展开全部
(1)解:作BD垂直Y轴于D.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC
.所以⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.
即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S△PAC=S△POA+S△POC-S△AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n),
因为S△AOC=AO·CO/2=2·5/2=5<12
所以P在第三象限
⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,
得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.
故△AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,
即BN-BH=2AM, BN-NC=2AM.
∠BDA=∠AOC=90°;∠BAD=∠ACO(均与∠OAC互余);AB=AC
.所以⊿BDA≌⊿AOC(AAS).
得:BD=AO=2; AD=CO=5.则OD=AD-AO=3.
即点B为(-2,-3).
(2)解:当点P在AC右上方时,由于点P在第一,三象限的角平分线上,则横纵坐标相等.
设点P为(m,m),m>0.S△PAC=S△POA+S△POC-S△AOC.
即12=2m/2+5m/2-2*5/2, m=34/7;
当点P在AC左下方第三象限内时,设点P为(n,n),
因为S△AOC=AO·CO/2=2·5/2=5<12
所以P在第三象限
⊿PAC=S⊿POA+S⊿POC+S⊿AOC.
即12=2(-n)/2+5(-n)/2+2*5/2, n=-2.
所以点P为(34/7,34/7)或者(-2,-2).
(3)BN-NC=2AM.
证明:在BN上截取BH=CN,连接AN,AH.
∠BAC=∠BNC=90°,则点A,B,C,N在同BC为直径的同一个圆上,
得∠ABH=∠ACN.
又AB=AC,则⊿ABH≌⊿ACN(AAS),AH=AN,∠BAH=∠CAN.
则∠CAN+∠CAH=∠BAH+∠CAH=90度.
故△AHN为等腰直角三角形.
又AM垂直HN,则HN=2AM,
即BN-BH=2AM, BN-NC=2AM.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询