在△ABC中,AB=AC,D点在AB上,E点在AC的延长线上,且CE=BD,连接DE,交BC于G,求证DG=EG
展开全部
过D点作DF//AE,交BC于F,则
<DFB=<ACB
因为,AB=AC,那么<B=<ACB
所以,<DFB=<B
从而,DF=BD,
已知 CE=BD
那么 DF=CE,又DF//CE
所以四边形DFEC是平行四边形
对角线DE和CF相交于G
所以, DG=EG
这种方法,应该是最简单明了的证明方法之一,希望对你有所帮助.
<DFB=<ACB
因为,AB=AC,那么<B=<ACB
所以,<DFB=<B
从而,DF=BD,
已知 CE=BD
那么 DF=CE,又DF//CE
所以四边形DFEC是平行四边形
对角线DE和CF相交于G
所以, DG=EG
这种方法,应该是最简单明了的证明方法之一,希望对你有所帮助.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-01
展开全部
过D作DF∥AC交BC于F,
∵DF∥AC,
∴∠DFC=∠FCE,∠DFB=∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠DFB,
∴BD=DF,
∵BD=CE,
∴DF=CE,
∵∠DFC=∠FCE,∠DGF=∠CGE,
∴△DFG≌△ECG,
∴DG=GE.
∵DF∥AC,
∴∠DFC=∠FCE,∠DFB=∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠DFB,
∴BD=DF,
∵BD=CE,
∴DF=CE,
∵∠DFC=∠FCE,∠DGF=∠CGE,
∴△DFG≌△ECG,
∴DG=GE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询