四棱锥P-ABCD的底面是平行四边形, E、F分别是棱PD、PC上的点, 且PE=2ED。。。呃,一道数学题……

四棱锥P-ABCD的底面是平行四边形,E、F分别是棱PD、PC上的点,且PE=2ED,求证:BF∥平面AEC的充要条件是点F为棱PC的中点。就是这样,我已经挠了脑袋一个晚... 四棱锥P-ABCD的底面是平行四边形, E、F分别是棱PD、PC上的点, 且PE=2ED, 求证:BF∥平面AEC的充要条件是点F为棱PC的中点。
就是这样,我已经挠了脑袋一个晚上了……还没挠出来。。求帮忙
展开
看涆余
2011-10-01 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4335万
展开全部
我来帮你一下,
1,已知F是PC中点,取PE中点M,连结MF,连结AC和BD交于O,连结OE,BM,
MF是△PEC中位线,MF//CE,
四边形ABCD是平行四边形,则对角线互平分,O是BD中点,PE=2DE,PM=EM=DE,
OE是△DBM中位线,
OE//BM,
BM∩MF=M,
OE∩CE=E,
∴平面MFB//平面CEO(平面AEC),
BF∈平面MFB,
∴BF//平面AEC。
2、已知BF//平面AEC,
与前相同,取PE中点M,OE是△DMB中位线,OE//MB,
OE∈平面AEC,
故BM//平面AEC,
MB∩BF=B,
故平面BMF//平面AEC,
MF∈平面BMF,
故MF//平面AEC,
平面PDC∩平面AEC=EC,
故MF//CE,
在△PEC中。M是PE中点,MF//CE,故MF是△PEC中位线,
∴F是PC中点。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式