已知H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足向量HP·向量PM=0,

已知H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足向量HP·向量PM=0,向量PM=-3/2向量MQ。⑴当点P在y轴上移动时,求点M的轨迹C... 已知H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足向量HP·向量PM=0,向量PM=-3/2向量MQ。⑴当点P在y轴上移动时,求点M的轨迹C⑵过点T(-1,0)作直线l与轨迹C交与A、B两点,若在x轴上存在一点E(xo,0),使得三角形ABE是等边三角形,求xo的值 主要第二问 展开
anranlethe
2011-10-01 · TA获得超过8.6万个赞
知道大有可为答主
回答量:1.7万
采纳率:80%
帮助的人:2.2亿
展开全部
既然第一小题会,我就不讲了,求出来是抛物线:y^2=4x
(2)设直线L:y=k(x+1),与抛物线y^2=4x联列,消去y,得方程:k^2*x^2+2(k^2-2)x+k^2=0;①
设A(x1,y1),B(x2,y2);
则y1=k(x1+1),y2=k(x2+1),所以y1+y2=k(x1+x2)+2k;y1-y2=k(x1-x2);
则由方程①得:x1+x2=-2+4/k^2,x1*x2=1,
所以可得(x1-x2)^2=(x1+x2)^2-4x1*x2=16/k^4-16/k^2,则(y1-y2)^2=16/k^2-16
所以AB^2=16/k^4-16;
且可得AB的中点设为D(-1+2/k^2,k+2/k);下面太繁琐了,我把思路说一下吧:
DE垂直于L,K(DE)可以用x0和k来表示,因为K(DE)=-1/k,
所以可得到一个关于k和x0的等式;
又等边三角形,所以E到直线L的距离=AB的二分之根号三倍,这是第二个方程;
由这两个方程就可解出x0了。

希望能帮到你,如果不懂,请Hi我,祝学习进步!
来自:求助得到的回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式