D是等边三角形ABC外一点,DB=DC,角bdc=120°,点e,f分别在ab,ac上
1个回答
展开全部
证明:
过D点作DM⊥EF交EF于M
∵⊿ABC是等边三角形,
∴∠BAC=∠ABC=∠ACB=60º
∵AD⊥BC,BD=CD
∴AD是等腰三角形BDC底边的垂直平分线【等腰三角形底边的高就是底边的垂直平分线】
∵∠BDC=120º
∴∠BDA=∠CDA=120º÷2=60º
∠DBC=∠DCB=90º-60º=30º
则∠ABD=∠ABC+∠DBC=60º+30º=90º
同理∠ACD=90º
∵DE平分∠BEF【若用角平分线定理可直接证明BD=MD,怕你没有学,所以用全等证明】
∴∠BED=∠MED
又∵DE=DE,∠EBD=∠EMD=90º
∴⊿EBD≌⊿EMD(AAS )
∴BD=DM
∵BD=CD,∴MD=CD
∵⊿MFD和⊿CFD是直角三角形,且DF=DF
∴⊿MFD≌⊿CFD
∴∠MFD=∠CFD
即FD平分∠EFC
过D点作DM⊥EF交EF于M
∵⊿ABC是等边三角形,
∴∠BAC=∠ABC=∠ACB=60º
∵AD⊥BC,BD=CD
∴AD是等腰三角形BDC底边的垂直平分线【等腰三角形底边的高就是底边的垂直平分线】
∵∠BDC=120º
∴∠BDA=∠CDA=120º÷2=60º
∠DBC=∠DCB=90º-60º=30º
则∠ABD=∠ABC+∠DBC=60º+30º=90º
同理∠ACD=90º
∵DE平分∠BEF【若用角平分线定理可直接证明BD=MD,怕你没有学,所以用全等证明】
∴∠BED=∠MED
又∵DE=DE,∠EBD=∠EMD=90º
∴⊿EBD≌⊿EMD(AAS )
∴BD=DM
∵BD=CD,∴MD=CD
∵⊿MFD和⊿CFD是直角三角形,且DF=DF
∴⊿MFD≌⊿CFD
∴∠MFD=∠CFD
即FD平分∠EFC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询