已知函数fx的定义域为(-∞,∞),对任意xy都有fx+y=fx+fy+1/2,且f1/2=0,当x>1/2时,fx>0求函数单调性 20
4个回答
展开全部
∵fxy=fx+fy,f2=1
所以原不等式可变为
f[x(x-2)]<3f(2)=f(8)
因为函数在定义域上单调递增
所以x²-2x<8
且x>0 ,x-2>0
联立求解即可
所以原不等式可变为
f[x(x-2)]<3f(2)=f(8)
因为函数在定义域上单调递增
所以x²-2x<8
且x>0 ,x-2>0
联立求解即可
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x2)-f(x1)=f(x2-x1)+1/2
=f(x2-x1)+f(1/2)+1/2=f(x2-x1+1/2)
因为x2-x1>0,所以x2-x1+1/2>1/2
于是f(x2-x1+1/2)>0
所以f(x2)>f(x1)
f(x)为增函数
(2)f(t-2)<f(2010-t)
t-2<2010-t
得t<1006
djh123ok 2011-10-1
相关内容
=f(x2-x1)+f(1/2)+1/2=f(x2-x1+1/2)
因为x2-x1>0,所以x2-x1+1/2>1/2
于是f(x2-x1+1/2)>0
所以f(x2)>f(x1)
f(x)为增函数
(2)f(t-2)<f(2010-t)
t-2<2010-t
得t<1006
djh123ok 2011-10-1
相关内容
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-10-01
展开全部
我真不会啊我是学文科的人对不起啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询