如何使用遗传算法或神经网络在MATLAB 中求二元函数最小值

f=4*x^2-2.1*x^4+1/3*x^6+x*y-4*y^2+4*y^4。x在【-3,3】中,y在【-2,2】中... f=4*x^2-2.1*x^4+1/3*x^6+x*y-4*y^2+4*y^4。x在【-3,3】中,y在【-2,2】中 展开
 我来答
1174155761
2015-08-09
知道答主
回答量:9
采纳率:0%
帮助的人:4.5万
展开全部
% 2008年4月12日修改
%**********************%主函数*****************************************
function main()
global chrom lchrom oldpop newpop varible fitness popsize sumfitness %定义全局变量
global pcross pmutation temp bestfit maxfit gen bestgen length epop efitness val varible2 varible1
global maxgen po pp mp np val1
length=18;
lchrom=30; %染色体长度
popsize=30; %种群大小
pcross=0.6; %交叉概率
pmutation=0.01; %变异概率
maxgen=1000; %最大代数
mp=0.1; %保护概率
%
initpop; % 初始种群
%
for gen=1:maxgen
generation;
end
%
best;
bestfit % 最佳个体适应度值输出
bestgen % 最佳个体所在代数输出
x1= val1(bestgen,1)
x2= val1(bestgen,2)
gen=1:maxgen;
figure
plot(gen,maxfit(1,gen)); % 进化曲线
title('精英保留');
%
%********************** 产生初始种群 ************************************
%
function initpop()
global lchrom oldpop popsize
oldpop=round(rand(popsize,lchrom)); %生成的oldpop为30行12列由0,1构成的矩阵
%其中popsize为种群中个体数目lchrom为染色体编码长度

%
%*************************%产生新一代个体**********************************
%
function generation()
global epop oldpop popsize mp
objfun; %计算适应度值
n=floor(mp*popsize); %需要保留的n个精英个体
for i=1:n
epop(i,:)=oldpop((popsize-n+i),:);
% efitness(1,i)=fitness(1,(popsize-n+i))
end
select; %选择操作
crossover;
mutation;
elite; %精英保留

%
%************************%计算适应度值************************************
%
function objfun()
global lchrom oldpop fitness popsize chrom varible varible1 varible2 length
global maxfit gen epop mp val1
a1=-3; b1=3;
a2=-2;b2=2;
fitness=0;
for i=1:popsize
%前一未知数X1
if length~=0
chrom=oldpop(i,1:length);% before代表节点位置
c=decimal(chrom);
varible1(1,i)=a1+c*(b1-a1)/(2.^length-1); %对应变量值

%后一未知数
chrom=oldpop(i,length+1:lchrom);% before代表节点位置
c=decimal(chrom);
varible2(1,i)=a2+c*(b2-a2)/(2.^(lchrom-length)-1); %对应变量值
else
chrom=oldpop(i,:);
c=decimal(chrom);
varible(1,i)=a1+c*(b1-a1)/(2.^lchrom-1); %对应变量值
end
%两个自变量
fitness(1,i)=4*varible1(1,i)^2-2.1*varible1(1,i)^4+1/3*varible1(1,i)^6+varible1(1,i)*varible2(1,i)-4*varible2(1,i)^2+4*varible2(1,i)^4;
%fitness(1,i) = 21.5+varible1(1,i)*sin(4*pi*varible1(1,i))+varible2(1,i) *sin(20*pi*varible2(1,i));
%一个自变量
%fitness(1,i) = 20*cos(0.25*varible(1,i))-12*sin(0.33*varible(1,i))+40 %个体适应度函数值
end
lsort; % 个体排序
maxfit(1,gen)=max(fitness); %求本代中的最大适应度值maxfit

val1(gen,1)=varible1(1,popsize);
val1(gen,2)=varible2(1,popsize);
%************************二进制转十进制**********************************
%
function c=decimal(chrom)
c=0;
for j=1:size(chrom,2)
c=c+chrom(1,j)*2.^(size(chrom,2)-j);
end
%
%************************* 个体排序 *****************************
% 从小到大顺序排列
%
function lsort()
global popsize fitness oldpop epop efitness mp val varible2 varible1
for i=1:popsize
j=i+1;
while j<=popsize
if fitness(1,i)>fitness(1,j)
tf=fitness(1,i); % 适应度值
tc=oldpop(i,:); % 基因代码
fitness(1,i)=fitness(1,j); % 适应度值互换
oldpop(i,:)=oldpop(j,:); % 基因代码互换
fitness(1,j)=tf;
oldpop(j,:)=tc;
end
j=j+1;
end
val(1,1)=varible1(1,popsize);
val(1,2)=varible2(1,popsize);
end

%*************************转轮法选择操作**********************************
%
function select()
global fitness popsize sumfitness oldpop temp mp np
sumfitness=0; %个体适应度之和
for i=1:popsize % 仅计算(popsize-np-mp)个个体的选择概率
sumfitness=sumfitness+fitness(1,i);
end
%
for i=1:popsize % 仅计算(popsize-np-mp)个个体的选择概率
p(1,i)=fitness(1,i)/sumfitness; % 个体染色体的选择概率
end
%
q=cumsum(p); % 个体染色体的累积概率(内部函数),共(popsize-np-mp)个
%
b=sort(rand(1,popsize)); % 产生(popsize-mp)个随机数,并按升序排列。mp为保护个体数
j=1;
k=1;
while j<=popsize % 从(popsize-mp-np)中选出(popsize-mp)个个体,并放入temp(j,:)中;
if b(1,j)<q(1,k)
temp(j,:)=oldpop(k,:);
j=j+1;
else
k=k+1;
end
end
%
j=popsize+1; % 从统一挪过来的(popsize-np-mp)以后个体——优秀个体中选择
for i=(popsize+1):popsize % 将mp个保留个体放入交配池temp(i,:),以保证群体数popsize
temp(i,:)=oldpop(j,:);
j=j+1;
end
%
%**************************%交叉操作***************************************
%
function crossover()
global temp popsize pcross lchrom mp
n=floor(pcross*popsize); %交叉发生的次数(向下取整)
if rem(n,2)~=0 % 求余
n=n+1; % 保证为偶数个个体,便于交叉操作
end
%
j=1;
m=0;
%
% 对(popsize-mp)个个体将进行随机配对,满足条件者将进行交叉操作(按顺序选择要交叉的对象)
%
for i=1:popsize
p=rand; % 产生随机数
if p<pcross % 满足交叉条件
parent(j,:)=temp(i,:); % 选出1个父本
k(1,j)=i;
j=j+1; % 记录父本个数
m=m+1 ; % 记录杂交次数
if (j==3)&(m<=n) % 满足两个父本(j==3),未超过交叉次数(m<=n)
pos=round(rand*(lchrom-1))+1; % 确定随机位数(四舍五入取整)
for i=1:pos
child1(1,i)=parent(1,i);
child2(1,i)=parent(2,i);
end
for i=(pos+1):lchrom
child1(1,i)=parent(2,i);
child2(1,i)=parent(1,i);
end
i=k(1,1);
j=k(1,2);
temp(i,:)=child1(1,:);
temp(j,:)=child2(1,:);
j=1;
end
end
end
%
%****************************%变异操作*************************************
%
function mutation()
global popsize lchrom pmutation temp newpop oldpop mp
m=lchrom*popsize; % 总的基因数
n=round(pmutation*m); % 变异发生的次数
for i=1:n % 执行变异操作循环
k=round(rand*(m-1))+1; %确定变异位置(四舍五入取整)
j=ceil(k/lchrom); % 确定个体编号(取整)
l=rem(k,lchrom); %确定个体中变位基因的位置(求余)
if l==0
temp(j,lchrom)=~temp(j,lchrom); % 取非操作
else
temp(j,l)=~temp(j,l); % 取非操作
end
end
for i=1:popsize
oldpop(i,:)=temp(i,:); %产生新的个体
end
%
%*********************%精英选择%*******************************************
%
function elite()
global epop oldpop mp popsize
objfun; %计算适应度值
n=floor(mp*popsize); %需要保留的n个精英个体
for i=1:n
oldpop(i,:)=epop(i,:);
% efitness(1,i)=fitness(1,(popsize-n+i))
end;

%
%*********************%最佳个体********************************************
%
function best()
global maxfit bestfit gen maxgen bestgen
bestfit=maxfit(1,1);
gen=2;
while gen<=maxgen
if bestfit<maxfit(1,gen)
bestfit=maxfit(1,gen);
bestgen=gen;
end
gen=gen+1;
end
%**************************************************************************
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
顽放丸9177
2011-10-10
知道答主
回答量:95
采纳率:0%
帮助的人:59万
展开全部
hehe,GA可以了!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
牛得天下
2011-10-04 · TA获得超过2597个赞
知道小有建树答主
回答量:951
采纳率:0%
帮助的人:486万
展开全部
留下联系方式哦,我有相关代码。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式