如果一质点在直线运动过程中,某时刻的瞬时速度和该时刻已通过的距离成正比,这是什么运动?

说得简单些,就是速度正比于位移的直线运动数学推导会得到很奇异的,不可理解的结果例如:建立一维坐标轴,把0-1米间的部分无限微分,每段长Δx,分为n段用v1,v2,v3……... 说得简单些,就是速度正比于位移的直线运动
数学推导会得到很奇异的,不可理解的结果
例如:建立一维坐标轴,把0-1米间的部分无限微分,每段长Δx,分为n段
用v1,v2,v3……vn来表示通过Δx1,Δx2,Δx3,……Δxn时的速度
速度正比于位移,所以v=kx
则有v1=kΔx
v2=2kΔx
v3=3kΔx
……
vn=nkΔx

对应地,用t1,t2,t3……tn来表示通过Δx1,Δx2,Δx3,……Δxn时的时间
则有t1=Δx/kΔx=1/k
t2=1/2k
t3=1/3k
……
tn=1/4k

则质点从0-1米所用时间为
Σt=(1/k)*(1+1/2+1/3+1/4+1/5+……+1/n)
当n趋于∞时,由于调和级数是发散的,Σt趋于∞
也就是如此运动,质点永远到不了1米处
这就很奇怪了
难道这样的运动不存在吗?
若存在,请推导出它的v-t和x-t函数关系并解释上述结果的成因
若不存在,请证明

请真正理解我的问题,并能够认真负责地解答的高手来回答
回答满意的追加30分
谢谢
展开
_新月曲如眉_
2011-10-02 · 超过21用户采纳过TA的回答
知道答主
回答量:44
采纳率:0%
帮助的人:49.4万
展开全部
首先这个问题我也不敢说很清楚,商讨吧:
v=kx
dx/dt=kx
∫dx/x=∫kdt (A)
lnx=kt+c
x=e^(kt+c)
x=Ce^(kt)
(A)式要求x0不为0,否则分母无意义;
类比一下谐振子,x和Ek不能全为0,也就是说这个运动的重点在于初始值的设定。
以上
ZAIZAIRESAIL
2011-10-03 · TA获得超过301个赞
知道小有建树答主
回答量:242
采纳率:0%
帮助的人:87.4万
展开全部
想问你个问题,我觉得位移是速度和时间共同的的变量,速度的话可以是变速可以是匀速,如果是速度也是个变量的话,那就是说位移和速度与时间都有关系,那么,首先,你的v=kx,这种关系正不正确。
按你的推导的话,最终结果显示,就是这种v=kx的关系应该不存在,对吗?如果不存在的话,那应该只是说明你的v=kx,这种关系是不正确而已吧,并不能证明这种运动不存在。
以上仅是我个人观点,如有错误,勿喷.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
0t65w3iz
2011-10-03 · 贡献了超过154个回答
知道答主
回答量:154
采纳率:0%
帮助的人:30.1万
展开全部
YST751
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式