设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a (2)求 20

设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a(2)求实数a的取值范围,使得对任意的x属于(0,3e],恒有f(x)小于等于4e... 设函数f(x)=(x-a)^2lnx,a属于R(1)若x=e为y=f(x)的极值点,求a (2)求实数a的取值范围,使得对任意的x属于(0,3e],恒有f(x)小于等于4e^2成立
这个答案我看不懂,第二问,怎么冒出个0<3a<1
解:(I)求导得f′(x)=2(x-a)lnx+
展开
 我来答
xunhrpcai
2011-10-10 · TA获得超过207个赞
知道答主
回答量:277
采纳率:0%
帮助的人:129万
展开全部
解:(I)求导得f′(x)=2(x-a)lnx+ =(x-a)(2lnx+1- ),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,符合题意,
所以a=e,或a=3e
(II)①当0<3a≤1时,对于任意的实数x∈(0,3a],恒有f(x)≤0<4e2成立,即0<a≤ 1/3符合题意
②当3a>1时即a> 1/3 时,由①知,x∈(0,1]时,不等式恒成立,故下研究函数在(1,3a]上的最大值,
首先有f(3a)=(3a-a)2ln3a=4a2ln3a此值随着a的增大而增大,故应有
4a2ln3a≤4e2即a2ln3a≤e2,
故参数的取值范围是0<a≤ 1/3或a> 1/3 且a2ln3a≤e2,
匿名用户
2013-03-17
展开全部
解:(I)求导得f′(x)=2(x-a)lnx+ =(x-a)(2lnx+1- ),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,符合题意,
所以a=e,或a=3e
(II)①当0<3a≤1时,对于任意的实数x∈(0,3a],恒有f(x)≤0<4e2成立,即0<a≤ 1/3符合题意
②当3a>1时即a> 1/3 时,由①知,x∈(0,1]时,不等式恒成立,故下研究函数在(1,3a]上的最大值,
首先有f(3a)=(3a-a)2ln3a=4a2ln3a此值随着a的增大而增大,故应有
4a2ln3a≤4e2即a2ln3a≤e2,
故参数的取值范围是0<a≤ 1/3或a> 1/3 且a2ln3a≤e2,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-10-02
展开全部
水知道
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式