已知函数f(x)=x^2+4x,(x≥0);4x-x^2,(x<0). 若f(2-a)>f(a),则实数a的取值范围是?
注意一下是f(2-a)>f(a)的情况,不是f(2-a^2)>f(a)……希望有详细过程,谢谢...
注意一下是f(2-a)>f(a)的情况,不是f(2-a^2)>f(a)……
希望有详细过程,谢谢 展开
希望有详细过程,谢谢 展开
展开全部
追问
f(x)=x^2+4x,(x≥0)的极值点在x=-2处,
f(x)=4x-x^2,(x<0)的极值点在x=2处,
↑以上两处是指把解析式配方成顶点式而的出来的吗?
追答
不必如此,y=ax^2+bx+c的极值点就在x=-b/(2a)处.
展开全部
(1)a<0时,则2-a>0,所以f(2-a)=a^2-8a+12,f(a)=-a^2+4a,
所以f(2-a)>f(a),即a^2-8a+12>-a^2+4a,整理得:a^2-6a+6>0,
得:a>3+√3,或a<3-√3,又因为a<0,
所以:a<0;
(2)0≦a≦2时,2-a>0,所以f(2-a)=a^2-8a+12,f(a)=a^2+4a
所以f(2-a)>f(a),即a^2-8a+12>a^2+4a,解得:a<1,又因为0≦a<2,
所以:0≦a<1;
(3)a>2时,则2-a<0,所以f(2-a)=-a^2+4,f(a)=a^2+4a;
所以f(2-a)>f(a),即-a^2+4>a^2+4a,整理得:2a^2+4a-4<0,
解得:-1-√3<a<-1+√3,又因为a>2,而-1+√3约等于0.732
所以:a属于空集;
综上:实数a的取值范围是:a<1
希望能帮到你,如果不懂,请Hi我,祝学习进步!
所以f(2-a)>f(a),即a^2-8a+12>-a^2+4a,整理得:a^2-6a+6>0,
得:a>3+√3,或a<3-√3,又因为a<0,
所以:a<0;
(2)0≦a≦2时,2-a>0,所以f(2-a)=a^2-8a+12,f(a)=a^2+4a
所以f(2-a)>f(a),即a^2-8a+12>a^2+4a,解得:a<1,又因为0≦a<2,
所以:0≦a<1;
(3)a>2时,则2-a<0,所以f(2-a)=-a^2+4,f(a)=a^2+4a;
所以f(2-a)>f(a),即-a^2+4>a^2+4a,整理得:2a^2+4a-4<0,
解得:-1-√3<a<-1+√3,又因为a>2,而-1+√3约等于0.732
所以:a属于空集;
综上:实数a的取值范围是:a<1
希望能帮到你,如果不懂,请Hi我,祝学习进步!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
作出y=x²+4x的图象,截取x≥0的部分
现作出y=-x²+4x的图象,截取x<0的部分
两段图象合起来就是f(x)的图象,由图象可知f(x)是增函数
因f(2-a)>f(a)
故2-a>a 解得a<1
现作出y=-x²+4x的图象,截取x<0的部分
两段图象合起来就是f(x)的图象,由图象可知f(x)是增函数
因f(2-a)>f(a)
故2-a>a 解得a<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是个分段函数,可以先分段把函数图象画出来。看似复杂,画完后就能看出f(x)在R上是单增的。所以很容易得到原命题的等价条件:2-a>a,解得a<1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询