设集合M=|a,b,c|,N=|0.1|,映射f:M到N满足f(a)+f(b)=f(c),则映射f:M到N的个数是

潘朵拉没有秘密
2012-10-10
知道答主
回答量:28
采纳率:0%
帮助的人:19.4万
展开全部
解:因为:f(a)∈N,f(b)∈N,f(c)∈N,且f(a)+f(b)=f(c),
所以分为3种情况:0+0=0或者 0+1=1或者 0+(-1)=-1或者-1+1=0.
当f(a)=f(b)=f(c)=0时,只有一个映射;
当f(c)为0,而另两个f(a)、f(b)分别为1,-1时,有A22=2个映射.
当f(c)为-1或1时,而另两个f(a)、f(b)分别为1(或-1),0时,有2×2=4个映射.
因此所求的映射的个数为1+2+4=7.
feidao2010
2011-10-03 · TA获得超过13.7万个赞
知道顶级答主
回答量:2.5万
采纳率:92%
帮助的人:1.6亿
展开全部
0+0=0
1+0=1
0+1=1
只有这三种情形,
所以 有三个映射
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式