f(x)=8+2x-x^2,若g(x)=f(2-x^2),试确定g(x)的单调区间

请诸位指教... 请诸位指教 展开
狂飚因特网
2007-08-07 · TA获得超过7895个赞
知道小有建树答主
回答量:1778
采纳率:0%
帮助的人:2127万
展开全部
解析:g(x)=f(u)=8+2u-u2,u=2-x2.g(x)是一复合函数,只须求出f(u)=8+2u-u2与u(x)=2-x2各自单调区间,再根据复合函数单调性的判定定理即可求解.

解答:令f(u)=-u2+2u+8,u(x)=2-x2,
由u(x)=2-x2可知,x≥0递减,x<0递增且u≤2.
由f(u)=-u2+2u+8,可知,
当u≤1时递增,当1<u≤2时递减.
(1)当u≤1时,2-x2≤1,即x≥1或x≤-1,
故x≥1时,g(x)单调递减,x≤-1时,g(x)单调递增.
(2)当1<u≤2时,1<2-x2≤2,即-1<x<1
故-1<x<0时,g(x)单调递减,0≤x<1时,g(x)单调递增.
综上,g(x)的单调递增区间为(-∞,-1〕,〔0,1).
g(x)的单调递减区间为(-1,0),〔1,+∞).

解题规律:
对于复合函数y=f〔g(x)〕,若u=g(x)在区间〔a,b〕上具有单调性,且y=f(u)在区间〔g(a),g(b)〕或〔g(b),g(a)〕上也具有单调性,则函数y=f〔g(x)〕在区间〔a,b〕上的单调性如下表所示:
u=g(x)g=f(u)y=f〔g(x)〕增增增增减减减增减减减增
注:(1)该法则可简记为“同增异减”,意即若u=g(x)与y=f(u)的增减性相同时,则y=f〔g(x)〕为增函数;若u=g(x)与y=f(u)增减性相反时,则y=f 〔g(x)〕为减函数.
(2)应用该法则时,首先应考虑函数的定义域.
315971196
2007-08-07 · TA获得超过3078个赞
知道小有建树答主
回答量:457
采纳率:0%
帮助的人:544万
展开全部
化简g(x)=x^4-6*x^2+16(即同二次函数)
在(3.正无穷)递增
在(负无穷,3)递减
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式