已知a∈R,函数f(x)=x|x-a|,

(1)当a=2时,写出y=f(x)的单调递增区间;(2)求函数y=f(x)在区间[1,2](2)求函数y=f(x)在区间[1,2]上的最小值... (1)当a=2时,写出y=f(x)的单调递增区间;(2)求函数y=f(x)在区间[1,2](2)求函数y=f(x)在区间[1,2]上的最小值 展开
660691
2011-10-05 · TA获得超过5710个赞
知道大有可为答主
回答量:964
采纳率:0%
帮助的人:430万
展开全部
(1) ,a=2时,f(x)=x|x-2|的单调递增区间为:(-无穷,1),(2,+无穷)。
(2) ,a>2时,f(x)在区间(-无穷,a/2),(a,+无穷)单调递增;
在区间(a/2,a)单调递减。
因为a>2,所以 当2<a<=3时,1<a/2<=2<a,
函数y=f(x)在区间[1,2]上的最小值只在x=1或x=2时取得,
而f(1)=a-1 , f(2)=2a-4。而3>=a>2,所以 f(1)>f(2)。
所以f(x)在区间[1,2]上的最小值为f(2)=2a-4;
3<a<=4时,1<a/2<=2<a,f(1)<f(2),
所以f(x)在区间[1,2]上的最小值为f(1)=a-1;
a>4时,1<2<a/2,f(x)在区间(-无穷,a/2),单调递增,
所以f(x)在区间[1,2]上的最小值为f(1)=a-1。
综上可知:当2<a<=3时,(x)在区间[1,2]上的最小值为f(2)=2a-4;
a>3时,f(x)在区间[1,2]上的最小值为f(1)=a-1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式