1个回答
展开全部
解:(1)FH与FC的数量关系是:FH=FC.
证明如下:延长DF交AB于点G,
由题意,知∠EDF=∠ACB=90°,DE=DF,
∴DG∥CB,
∵点D为AC的中点,
∴点G为AB的中点,且 DC=1/2AC,
∴DG为△ABC的中位线,
∴ DG=1/2BC.
∵AC=BC,
∴DC=DG,
∴DC-DE=DG-DF,
即EC=FG.
∵∠EDF=90°,FH⊥FC,
∴∠1+∠CFD=90°,∠2+∠CFD=90°,
∴∠1=∠2.
∵△DEF与△ADG都是等腰直角三角形,
∴∠DEF=∠DGA=45°,
∴∠CEF=∠FGH=135°,
∴△CEF≌△FGH,
∴CF=FH.
(2)FH与FC仍然相等.
证明如下:延长DF交AB于点G,
由题意,知∠EDF=∠ACB=90°,DE=DF,
∴DG∥CB,
∵点D为AC的中点,
∴点G为AB的中点,且 DC=1/2AC,
∴DG为△ABC的中位线,
∴ DG=1/2BC.
∵AC=BC,
∴DC=DG,
∴DC-DE=DG-DF,
即EC=FG.
∵∠EDF=90°,FH⊥FC,
∴∠1+∠CFD=90°,∠2+∠CFD=90°,
∴∠1=∠2.
∵△DEF与△ADG都是等腰直角三角形,
∴∠DEF=∠DGA=45°,
∴∠CEF=∠FGH=135°,
∴△CEF≌△FGH,
∴CF=FH.
(2)FH与FC仍然相等.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询