展开全部
是,
二次根式的定义和概念:
1、定义:一般形如√ā(a≥0)的代数式叫做二次根式。当a≥0时,√ā表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根) 2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。其中,a叫做被开方数。
编辑本段二次根式√ā的简单性质和几何意义
1)a≥0 ; √ā≥0 [ 双重非负性 ] 2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3) c=√a^2+b^2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。
编辑本段二次根式的性质和最简二次根式
如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等; 含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等 最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽的因式;(3)被开方数不含分母。
二次根式的定义和概念:
1、定义:一般形如√ā(a≥0)的代数式叫做二次根式。当a≥0时,√ā表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根) 2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。其中,a叫做被开方数。
编辑本段二次根式√ā的简单性质和几何意义
1)a≥0 ; √ā≥0 [ 双重非负性 ] 2)(√ā)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式] 3) c=√a^2+b^2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。
编辑本段二次根式的性质和最简二次根式
如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等; 含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等 最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽的因式;(3)被开方数不含分母。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是二次根式,√75=5√3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是的。
因为根号75=5根号3,根号3已是最简,无法再化简。
因为根号75=5根号3,根号3已是最简,无法再化简。
追问
可是它又不是问你最简二次根式
追答
因为它是最简了,还带有根号,所以就是二次根式。
判断是不是,就看它最简情况下,还有没有根号?
比如根号4,就不是二次根式,因为它不是最简式,最简等于2,就不带根号了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询