已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,正无穷)上有最大值5,

已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,正无穷)上有最大值5,则F(x)在(负无穷,0)上最小值?... 已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,正无穷)上有最大值5,则F(x)在(负无穷,0)上最小值 ? 展开
拉格朗日灬
2011-10-04 · TA获得超过227个赞
知道小有建树答主
回答量:141
采纳率:0%
帮助的人:123万
展开全部
af(x)+bg(x) 为奇函数 ,在(0,正无穷)上 af(x)+bg(x) ≤ 3,
在(负无穷,0)上 af(x)+bg(x) = - [ af(-x)+bg(-x) ] , af(-x)+bg(-x) ≤ 3, af(x)+bg(x) ≥ -3
故在(负无穷,0)上, F(x)=af(x)+bg(x)+2 ≥ -1 ,即 最小值为 -1
9102109653
2011-10-04
知道答主
回答量:9
采纳率:0%
帮助的人:4.3万
展开全部
H(-x)=af(-x)+bg(-x)+2=-[af(x)+bg(x)]+2,x在(0,正无穷)
则-x在(负无穷,0)
H(x)最大为5,所以af(x)+bg(x)最大为3
所以-[af(x)+bg(x)]最小为-3
所以H(x)在(负无穷,0)上最小值为-3+2=-1
综上所诉,为-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式