证明函数f(x)=x+1/x在区间(0,1)上是减函数

fibermail
2011-10-04 · TA获得超过3894个赞
知道小有建树答主
回答量:541
采纳率:0%
帮助的人:868万
展开全部
用定义法即可证明:
令0<x1<x2<1,
则f(x1)-f(x2)=x1-x2+1/x1-1/x2=(x1-x2)[1-1/(x1x2)]
x1-x2<0
1/(x1x2)>1
1-1/(x1x2)<0
因此f(x1)-f(x2)>0
所以在此区间(0,1)上为减函数
追问
为什么1-1/(x1x2)0
追答
f(x1)-f(x2)>0
是由 (x1-x2) [1-1/(x1x2) 这两个因式的符号得出的
Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
我同学是黄总
2011-10-04
知道答主
回答量:27
采纳率:0%
帮助的人:10万
展开全部
求导数=1-1/x2小于0,所以是减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
恩爱又坚定丶彩旗1809
2011-10-16 · TA获得超过6.7万个赞
知道大有可为答主
回答量:5.1万
采纳率:0%
帮助的人:6869万
展开全部
用定义法即可证明:
令0<x1<x2<1,
则f(x1)-f(x2)=x1-x2+1/x1-1/x2=(x1-x2)[1-1/(x1x2)]
x1-x2<0
1/(x1x2)>1
1-1/(x1x2)<0
因此f(x1)-f(x2)>0
所以在此区间(0,1)上为减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式