判断f(X)=ax/x²+1(a≠0)在[1,+00)上的单调性并证明。
3个回答
展开全部
解:
设X1,X2在(1,正无穷)上,且X1<X2
f(x1)-f(x2)=a[x1/(x1^2+1)-x2/(x2^2+1)]
=a[(x1x2^2+x1)-(x1^2x2+x2)]/(x1^2+1)*(x2^2+1)
=a(x1x2-1)(x2-x1)/(x1^2+1)*(x2^2+1)
因为:X1,X2在(1,正无穷)上,且X1<X2
所以:(x2-x1)为正数;(x1x2-1)为正数;(x1^2+1)*(x2^2+1)为正数
所以:
1。a>0
f(x1)-f(x2)=a(x1x2-1)(x2-x1)/(x1^2+1)*(x2^2+1)>0
f(x1)-f(x2)>0
f(x1)>f(x2)
所以函数在(1,正无穷)上是单调减函数;
2. a<0
f(x1)-f(x2)=a(x1x2-1)(x2-x1)/(x1^2+1)*(x2^2+1)<0
f(x1)-f(x2)<0
f(x1)<f(x2)
所以函数在(1,正无穷)上是单调增函数。
设X1,X2在(1,正无穷)上,且X1<X2
f(x1)-f(x2)=a[x1/(x1^2+1)-x2/(x2^2+1)]
=a[(x1x2^2+x1)-(x1^2x2+x2)]/(x1^2+1)*(x2^2+1)
=a(x1x2-1)(x2-x1)/(x1^2+1)*(x2^2+1)
因为:X1,X2在(1,正无穷)上,且X1<X2
所以:(x2-x1)为正数;(x1x2-1)为正数;(x1^2+1)*(x2^2+1)为正数
所以:
1。a>0
f(x1)-f(x2)=a(x1x2-1)(x2-x1)/(x1^2+1)*(x2^2+1)>0
f(x1)-f(x2)>0
f(x1)>f(x2)
所以函数在(1,正无穷)上是单调减函数;
2. a<0
f(x1)-f(x2)=a(x1x2-1)(x2-x1)/(x1^2+1)*(x2^2+1)<0
f(x1)-f(x2)<0
f(x1)<f(x2)
所以函数在(1,正无穷)上是单调增函数。
展开全部
(1)若f(x)为奇函数,则f(0)=0,代入解析式可得a=1/2
(2)首先定义域为R,令x1>x2,作差,f(x1)-f(x2)=1/(2^x2+1)-1/(2^x1+1)
又g(x)=2^x在R上单调递增,而x1>x2,分子相同,分母越大,,值反而越小
所以f(x1)-f(x2)>0
所以f(x)在R上单调递增
(2)首先定义域为R,令x1>x2,作差,f(x1)-f(x2)=1/(2^x2+1)-1/(2^x1+1)
又g(x)=2^x在R上单调递增,而x1>x2,分子相同,分母越大,,值反而越小
所以f(x1)-f(x2)>0
所以f(x)在R上单调递增
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
判断f(X)=ax/x²+1(a≠0)在[1,+00)上的单调性并证明
这类题,用导数证明,比较简单
解析:∵f(X)=ax/(x²+1)(a≠0)
令f’(x)=(a-ax²)/(x²+1)^2=0==>x=±1
当a<0时,函数f(x)在x=-1处取极大值;在x=1处取极小值;
当a>0时,函数f(x)在x=-1处取极小值;在x=1处取极大值;
∴在[1,+00)上
当a<0时,函数f(x)单调增;
当a>0时,函数f(x)单调减;
这类题,用导数证明,比较简单
解析:∵f(X)=ax/(x²+1)(a≠0)
令f’(x)=(a-ax²)/(x²+1)^2=0==>x=±1
当a<0时,函数f(x)在x=-1处取极大值;在x=1处取极小值;
当a>0时,函数f(x)在x=-1处取极小值;在x=1处取极大值;
∴在[1,+00)上
当a<0时,函数f(x)单调增;
当a>0时,函数f(x)单调减;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |