已知f(x)是一次函数,且f[f(x)]=4x-1,则f(x)的解析式为
3个回答
展开全部
f(x) = ax + b
f[f(x)] = a(ax+b) + b = a²x + ab+b = 4x -1
a² = 4, a = ±2
ab+b = (a+1)b = -1
b = -1/(a+1)
1. a = 2, b = -1/3, f(x) = 2x -1/3
2. a = -2, b = 1, f(x) = -2x + 1
f[f(x)] = a(ax+b) + b = a²x + ab+b = 4x -1
a² = 4, a = ±2
ab+b = (a+1)b = -1
b = -1/(a+1)
1. a = 2, b = -1/3, f(x) = 2x -1/3
2. a = -2, b = 1, f(x) = -2x + 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设f(x)=ax+b, 则f[f(x)]=f(ax+b)=a^2x+ab+b=4x-1
得a=2, b=-1/3或a=-2, b=1
f(x)=2x-1/3或f(x)=-2x+1
得a=2, b=-1/3或a=-2, b=1
f(x)=2x-1/3或f(x)=-2x+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询