2个回答
展开全部
如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC,则图中阴影部分的面积为 三分之二π
解:∵AB是⊙O的切线,
∴∠OBA=90°;
Rt△OAB中,OA=4,OB=2,
∴cos∠AOB=
OB
OA
=
1
2
,
∴∠AOB=60°;
∴∠CBO=∠AOB=60°;
∴△OBC是等边三角形,
∴∠COB=60°;
S阴影=S△ABC+S弓形BC=S△OBC+S弓形BC
=S扇形OBC=
60π×4
360
=
2π
3 .
解:∵AB是⊙O的切线,
∴∠OBA=90°;
Rt△OAB中,OA=4,OB=2,
∴cos∠AOB=
OB
OA
=
1
2
,
∴∠AOB=60°;
∴∠CBO=∠AOB=60°;
∴△OBC是等边三角形,
∴∠COB=60°;
S阴影=S△ABC+S弓形BC=S△OBC+S弓形BC
=S扇形OBC=
60π×4
360
=
2π
3 .
参考资料: http://www.jyeoo.com/Math/Ques/Detail/dc8682d5-f13d-43c2-8eb0-8045538e71ca
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询