帮忙解决一下这道题
2个回答
展开全部
在△ABC外作∠ACM=∠BCQ,且使CM=CQ,连结MP,
∵AC=BC,
∴△AMC≌△BQC(SAS)
∴∠MAC=∠B=45°,AM=BQ,
∴∠MAP=∠MAC+∠CAP=45°+45°=90°,
∴MP²=AP²+AM²=AP²+BQ²,
∵∠BCA=90°,∠PCQ=45°,
∴∠ACP+∠BCM=45°,
∵∠ACM=∠BCQ,
∴∠ACP+∠ACM=45°,
即∠MCP=∠BCP,
∵CM=CQ,PC=PC,
∴△MCP≌△QCP,
∴PQ=MP,
∴PQ²=AP²+BQ².
∵AC=BC,
∴△AMC≌△BQC(SAS)
∴∠MAC=∠B=45°,AM=BQ,
∴∠MAP=∠MAC+∠CAP=45°+45°=90°,
∴MP²=AP²+AM²=AP²+BQ²,
∵∠BCA=90°,∠PCQ=45°,
∴∠ACP+∠BCM=45°,
∵∠ACM=∠BCQ,
∴∠ACP+∠ACM=45°,
即∠MCP=∠BCP,
∵CM=CQ,PC=PC,
∴△MCP≌△QCP,
∴PQ=MP,
∴PQ²=AP²+BQ².
追问
图片给我
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询