
已知数列{an}满足对任意的正整数n,都有an>0,且a1^3+a2^3+..an^3=(a1+a2..an)^2,设数列{1/an*an+2}
设数列{1/an*an+2}的前n项和为Sn,不等式Sn>1/3loga(1-a)对于任意正整数n恒成立,求实数a的取值范围...
设数列{1/an*an+2}的前n项和为Sn,不等式Sn>1/3loga(1-a)对于任意正整数n恒成立,求实数a的取值范围
展开
1个回答
展开全部
a(n+1)^3=a(n+1)[2Sn+a(n+1)],Sn=a(n+1)[a(n+1)-1]/2,取a(n+1)=n+1,显然满足题目要求,
Sn=1/n(n+2)+1/(n-1)(n+1)+...+1/1*2=1-1/(n+1)>1/3loga(1-a)
令n->1/0,1>1/3loga(1-a),3>loga(1-a),a^3>a(1-a),a^2+a-1>0,
a<-(1+√5)/2和a>-(1-√5)/2
Sn=1/n(n+2)+1/(n-1)(n+1)+...+1/1*2=1-1/(n+1)>1/3loga(1-a)
令n->1/0,1>1/3loga(1-a),3>loga(1-a),a^3>a(1-a),a^2+a-1>0,
a<-(1+√5)/2和a>-(1-√5)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询