一道空间立体几何题,求详解,谢谢
1证明BD⊥PC
2若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥p-abcd的体积 展开
∵PA⊥面ABCD,BD在底面ABCD内
∴BD⊥PA
∵BD⊥AC ,PA∩AC=A
∴BD⊥平面PAC
又PC在平面PAC内
∴BD⊥PC
2
令AC∩BD=O,连接PO
∵BD⊥平面PAC
∴∠DPO为PD与平面PAC所成的角
即∠DPO=30º
∵ABCD是等腰梯形,AD//BC
BD⊥AC,AD=4
∴DO=AO=√2/2AD=2√2
∴PD=2*DO=4√2
PA=√(PD²-AD²)=4
∵ BD⊥AC
∴底面等腰梯形的高
h=1/2(AD+BC)=3
∴VP-ABCD=1/3*[(4+2)*3/2]*4=12
∴∠DPO为PD与平面PAC所成的角
怎么找到的P0就是角的一边呢?
斜线与平面所成角的定义:
l是平面α的斜线,A为斜足,在l上任取一点P(非斜足)
做PO⊥α,垂足为O,那么OA为斜线l在平面α内的射影,
则斜线l与其在α内射影AO的夹角叫做,l与α所成的角。
本例,BD⊥平面PAC,垂足为O
OP是DP在平面PAC内的射影,
∴∠DPO为PD与平面PAC所成的角
所以PA在平面ABCD的射影是AC
又BD⊥AC
由三垂线定理得
BD⊥PC
2、设BD、AC交于占O
因为ABCD是等腰三角形
所以AO=DO
又AC⊥BD
所以DO=√2/2AD=2√2
BO=√2
BD=AC=3√2
因为PA⊥平面ABCD
所以PA⊥BD
由第一份得知BD⊥AC
又PA、AC是平面PAC内两条相交线
所以BD⊥平面PAC
即是DO⊥平面PAC
所以PD与平面PAC所成的角为30°就是∠DPO=30°
sin∠DPO=DO/PD
sin60°=2√2/PD
PD=4√2
PA=√(PD²-AD²)=√(32-16)=4
所以 四棱锥 P-ABCD 的体积 =(1/ 3)底面等腰梯形ABCD的面积 * PA
=(1/3)*(1/2)AC*BD*PA=(1/3)*(1/2)3√2*3√2 * 4 = 12 .
第一题其实很简单.
因为 PA 垂直平面 ABCD ,所以PA垂直于平面 ABCD 内所有直线,包括 BD .
又因为 BD 垂直 AC ,所以 BD 同时垂直平面 PAC 内的 PA 和 AC ,即 BD 垂直于平面 PAC ,即 BD 垂直于 PC .
第二题也不复杂.
因为 AD , BC 是定值,并且 ABCD 是等腰梯形,所以要使得 AC 垂直 BD ,那么 AD , BC 之间的距离也一定是一个定值,而且可求.
要计算 AD , BC 的距离,其实只需要将 BD 平移到 CD' ,与 AD 相交于 AD 的延长线上一点 D' ,如图:
那么 AD' = AD + BC = 6 ,而且还有 AC 垂直 CD' ,以及等腰梯形性质得到的 AC = CD' ,
所以 BC 与 AD 的距离就是 3 (这个是等腰直角三角形的性质哈).
这样我们就搞定了底面等腰梯形ABCD的面积 = (2+4) * 3/2 = 9
下面我们来搞定四棱锥 P-ABCD 的高,也就是 PA 的长度.
我们先把等腰梯形中所有能求出来的边长都求出来,
三角形 ACD' 是等腰直角三角形,那三角形 AOD 呢? 当然也是啦,利用三个角都相等推出两个三角形相似就可以得出结论啦.
那么在等腰直角三角形 AOD 中,因为 AD = 4 ,很容易求出 AO = DO = 2√2 .
同理,在等腰直角三角形 BOC 中, BO = CO = √2 .
由题给的 PD 与平面 PAC 所成的角为 30 度 这个条件,我们可以得到什么结论呢?
哦,我们看到第一题我们证明了 BD 垂直平面 PAC ,那么 PD 与平面 PAC 所成的角就是角 OPD 了(当然这个线段 PO 是我刚才连上的=_=, O 点是 BD 与 AC 的交点).
同样,因为 PO 在平面 PAC 内,所以 BD 也垂直于 PO .
换个角度,在三角形 POD 中, PO 垂直 DO ,角 OPD = 30 度,那么角 ODP = 60 度,
而DO = 2√2 ,所以 PD = 4√2, PO = 2√6.
在直角三角形 PAD 或者 PAO 中,都已知了两边,要求第三边 PA 都非常容易.
所以 PA = 4 .
所以 四棱锥 P-ABCD 的体积 = 底面等腰梯形ABCD的面积 * PA * 1/3 = 9 * 4 * 1/3= 12 .
(改了下计算错误的地方.)
所以 BC 与 AD 的距离就是 3 (这个是等腰直角三角形的性质哈).什么性质,没懂
以斜边为底的等腰三角形的高是斜边的一半.其实算算就知道,等腰直角三角形的两个锐角都是45度.假设直角边为 x ,那么斜边就是√2 x,假设这个三角形斜边上的高为 h ,那么以直角边为底求出的面积为 x * x * (1/2) = (1/2) x^2.根据斜边为底求出的面积为 √2 x * h * (1/2) = (√2/2) xh .
因为三角形的面积没有改变,所以 (1/2) x^2 = (√2/2) xh . 化简 h = x/√2 = (√2/2) x 也就是斜边 √2 x 的一半.
上面斜边AD'=6 所以高是 3