在△ABC中,AB=AC,P是BC上一点,试证明:AB²=PA²+PB•PC.
3个回答
展开全部
证明:
设P为BC上任意一点,作AD⊥BC
根据勾股定理得:
AP^2=AD^2+BD^2
因为AB=AD,AD⊥BC
所以根据“三线合一”性质得BD=CD
所以PB*PC=(BD-PD)(CD+BD)
=(BD-PD)(BD+PD)
=BD^2-PD^2
所以
AP^2+PB*PC
=AD^2+BD^2+BD^2-PD^2
=AD^2+BD^2
因为由勾股定理得:
AD^2+BD^2=AB^2
所以AB^2-AP^2=PB*PC
设P为BC上任意一点,作AD⊥BC
根据勾股定理得:
AP^2=AD^2+BD^2
因为AB=AD,AD⊥BC
所以根据“三线合一”性质得BD=CD
所以PB*PC=(BD-PD)(CD+BD)
=(BD-PD)(BD+PD)
=BD^2-PD^2
所以
AP^2+PB*PC
=AD^2+BD^2+BD^2-PD^2
=AD^2+BD^2
因为由勾股定理得:
AD^2+BD^2=AB^2
所以AB^2-AP^2=PB*PC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用余弦定理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询