2/1*2+2/2*3+2/3*4+...+2/2011*2012(第一题) n/1*2+n/2*3+n/3*4+...+n/2011*2012 (第二题)
有过程!还有两题也帮我解决吧:2/1*3+2/3*5+2/5*7+...+2/2009*2011(第三题)1/1*3+1/3*5+...+1/2009*20119(第四题...
有过程!还有两题也帮我解决吧:
2/1*3+2/3*5+2/5*7+...+2/2009*2011(第三题)
1/1*3+1/3*5+...+1/2009*20119(第四题)
"/"是几又几分之几,"*"是乘 展开
2/1*3+2/3*5+2/5*7+...+2/2009*2011(第三题)
1/1*3+1/3*5+...+1/2009*20119(第四题)
"/"是几又几分之几,"*"是乘 展开
展开全部
2/1*2+2/2*3+2/3*4+...+2/2011*2012
=2*(1/1*2+1/2*3+1/3*4+...+1/2011*2012)
=2*(1-1/2+1/2-1/3+1/3-1/4+.......+1/2011-1/2012)
=2*(1-1/2012)
=2*2011/2012
=2011/1006
n/1*2+n/2*3+n/3*4+...+n/2011*2012
=n*(1/1*2+1/2*3+1/3*4+...+1/2011*2012)
=n*(1-1/2+1/2-1/3+1/3-1/4+.......+1/2011-1/2012)
=n*(1-1/2012)
=n*2011/2012
=2011n/2012
2/1*3+2/3*5+2/5*7+...+2/2009*2011
=1-1/3+1/3-1/5+1/5-1/7+.......+1/2009-1/2011
=1-1/2011
=2010/2011
1/1*3+1/3*5+...+1/2009*2011
=1/2*(1-1/3)+1/2*(1/3-1/5)+.....+1/2*(1/2009-1/2011)
=1/2(1-1/3+1/3-1/5+......+1/2009-1/2011)
=1/2*(1-1/2011)
=1/2*2010/2011
=1005/2011
=2*(1/1*2+1/2*3+1/3*4+...+1/2011*2012)
=2*(1-1/2+1/2-1/3+1/3-1/4+.......+1/2011-1/2012)
=2*(1-1/2012)
=2*2011/2012
=2011/1006
n/1*2+n/2*3+n/3*4+...+n/2011*2012
=n*(1/1*2+1/2*3+1/3*4+...+1/2011*2012)
=n*(1-1/2+1/2-1/3+1/3-1/4+.......+1/2011-1/2012)
=n*(1-1/2012)
=n*2011/2012
=2011n/2012
2/1*3+2/3*5+2/5*7+...+2/2009*2011
=1-1/3+1/3-1/5+1/5-1/7+.......+1/2009-1/2011
=1-1/2011
=2010/2011
1/1*3+1/3*5+...+1/2009*2011
=1/2*(1-1/3)+1/2*(1/3-1/5)+.....+1/2*(1/2009-1/2011)
=1/2(1-1/3+1/3-1/5+......+1/2009-1/2011)
=1/2*(1-1/2011)
=1/2*2010/2011
=1005/2011
展开全部
2/1*2+2/2*3+2/3*4+...+2/2011*2012(第一题)
=2*(1-1/2+1/2-1/3+....+1/2011-1/2012)
=2*(1-1/2012)
=2*2011/2012
=2011/1006
n/1*2+n/2*3+n/3*4+...+n/2011*2012 (第二题)
=n*(1-1/2+1/2-1/3+....+1/2011-1/2012)
=n*(1-1/2012)
=n*2011/2012
=2011n/2012
2/1*3+2/3*5+2/5*7+...+2/2009*2011(第三题)
=(1-1/3+1/3-1/5+.....+1/2009-1/2011)
=1-1/2011
=2010/2011
1/1*3+1/3*5+...+1/2009*2011(第四题)
=1/2*(1-1/3+1/3-1/5+.....+1/2009-1/2011)
=1/2*(1-1/2011)
=1/2*2010/2011
=1005/2011
=2*(1-1/2+1/2-1/3+....+1/2011-1/2012)
=2*(1-1/2012)
=2*2011/2012
=2011/1006
n/1*2+n/2*3+n/3*4+...+n/2011*2012 (第二题)
=n*(1-1/2+1/2-1/3+....+1/2011-1/2012)
=n*(1-1/2012)
=n*2011/2012
=2011n/2012
2/1*3+2/3*5+2/5*7+...+2/2009*2011(第三题)
=(1-1/3+1/3-1/5+.....+1/2009-1/2011)
=1-1/2011
=2010/2011
1/1*3+1/3*5+...+1/2009*2011(第四题)
=1/2*(1-1/3+1/3-1/5+.....+1/2009-1/2011)
=1/2*(1-1/2011)
=1/2*2010/2011
=1005/2011
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询