已知数列{an}中,a1=-1,且(n+1)an,(n+2)a(n+1),n成等差数列.
(1)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;(2)求{an}的通项公式....
(1)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;
(2)求{an}的通项公式. 展开
(2)求{an}的通项公式. 展开
1个回答
展开全部
(n+1)an,(n+2)a(n+1),n成等差数列.
2(n+2)a(n+1)=(n+1)an+n
2(n+2)a(n+1)-2n=(n+1)an-n
2(n+2)a(n+1)-2n+2=(n+1)an-n+2
2(n+2)a(n+1)-2(n+1)+4=(n+1)an-n+2
2[(n+2)a(n+1)-(n+1)+2]=(n+1)an-n+2
2b(n+1)=bn
b(n+1)/bn=1/2
所以数列{bn}是以1/2为公比的等比数列
bn=(n+1)an-n+2
b1=(1+1)a1-1+2
=2*(-1)+1
=-1
bn=b1q^(n-1)
=-1*(1/2)^(n-1)
=-(1/2)^(n-1)
(n+1)an-n+2=-(1/2)^(n-1)
(n+1)an=n-(1/2)^(n-1)-2
an=[n-(1/2)^(n-1)-2]/(n+1)
2(n+2)a(n+1)=(n+1)an+n
2(n+2)a(n+1)-2n=(n+1)an-n
2(n+2)a(n+1)-2n+2=(n+1)an-n+2
2(n+2)a(n+1)-2(n+1)+4=(n+1)an-n+2
2[(n+2)a(n+1)-(n+1)+2]=(n+1)an-n+2
2b(n+1)=bn
b(n+1)/bn=1/2
所以数列{bn}是以1/2为公比的等比数列
bn=(n+1)an-n+2
b1=(1+1)a1-1+2
=2*(-1)+1
=-1
bn=b1q^(n-1)
=-1*(1/2)^(n-1)
=-(1/2)^(n-1)
(n+1)an-n+2=-(1/2)^(n-1)
(n+1)an=n-(1/2)^(n-1)-2
an=[n-(1/2)^(n-1)-2]/(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询