初中阶段方差怎么计算
方差的计算方法:
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
样本方差:
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]
方差=1/n×[(A1-X拔)^2+(A2-X拔)^2+…+(An-X拔)^2]
X拔是A1、A2…An的平均数
标准差就是方差开方
扩展资料
方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。
推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动程度。
方差公式:s²=1/n[(x1-m) ²(x2-m) ²+.......+(xn-m) ²]
x为平均值