在△ABC中,AB=AC,点D是直线BC上一点,C不与B重合,以AD为一边在AD的右侧作△ADE,使AD=AE

(1)如图①,当点D在线段BC上,如果∠BAC=90°,则∠BCE=-------度;(2)∠BAC=α,∠BCE=β①如图②,若点D在线段BC上移动,则α,β之间有怎样... (1)如图①,当点D在线段BC上,如果∠BAC=90°,则∠BCE=-------度;(2)∠BAC=α,∠BCE=β
①如图②,若点D在线段BC上移动,则α,β之间有怎样的数量关系?(请说明理由);
②当点D在直线BC的延长线上时,则α,β之间有怎样的数量关系?(请说明理由)。
展开
wendyhx
2014-05-01 · TA获得超过6725个赞
知道大有可为答主
回答量:3151
采纳率:91%
帮助的人:2102万
展开全部

解:(1)90°. 理由:

 

∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
(2)①α+β=180°, 理由:
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,

∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∴α+∠B+∠ACB=180°,
∴α+β=180°;
②当点D在射线BC上时,α+β=180°; 理由:
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE,
∵∠BAC+∠B+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴ α+β=180°;
当点D在射线BC的反向延长线上时,α=β
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD=AE,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.

蟲巢群遭到攻擊
推荐于2016-02-13 · TA获得超过904个赞
知道小有建树答主
回答量:89
采纳率:75%
帮助的人:49.4万
展开全部
(1)90°. 理由:
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
(2)①α+β=180°, 理由:
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∴α+∠B+∠ACB=180°,
∴α+β=180°;
②当点D在射线BC上时,α+β=180°; 理由:
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE,
∵∠BAC+∠B+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴ α+β=180°;
当点D在射线BC的反向延长线上时,α=β
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD=AE,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式