分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCCE,CA=CD,CB=CE,∠ACD
分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交...
分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.
1)求证:△ACE≌△DCB;
(2)求证:∠APC=∠BPC. 展开
1)求证:△ACE≌△DCB;
(2)求证:∠APC=∠BPC. 展开
展开全部
(1)证明:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
(2)证明:分别过C作CH⊥AE垂足为H,C作CG⊥BD垂足为G,
∵△ACE≌△DCB.
∴AE=BD,
又全等三角形的面积相等即S△ACE=S△DCB,
所以AE和BD边上的高相等即CH=CG,
∴∠APC=∠BPC(角平分线的性质定理的逆定理).
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
(2)证明:分别过C作CH⊥AE垂足为H,C作CG⊥BD垂足为G,
∵△ACE≌△DCB.
∴AE=BD,
又全等三角形的面积相等即S△ACE=S△DCB,
所以AE和BD边上的高相等即CH=CG,
∴∠APC=∠BPC(角平分线的性质定理的逆定理).
追答
同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询