在椭圆x²/16+y²/4=1内,过点M(1,1),且被这点平分的弦所在的直线方程

2010zzqczb
2014-02-23 · TA获得超过5.2万个赞
知道大有可为答主
回答量:2.1万
采纳率:80%
帮助的人:6333万
展开全部
设(x1,y1),(x2,y2)是弦的端点,则
x1²/16+y1²/4=1 x2²/16+y2²/4=1
两个方程相减得:(x1+x2)(x1-x2)/16+(y1+y2)(y1-y2)/4=0
∵(1,1)是中点,∴x1+x2=2 y1+y2=2
代人上式得:2(x1-x2)/16+2(y1-y2)/4=0
解得:(y1-y2)/(x1-x2)=-1/4
∴弦所在的直线方程是:y-1=(-1/4)(x-1),即:x+4y-5=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式