如图,P为正方形ABCD对角线BD上任一点,PF垂直于DC,PE垂直于BC,求证,AP垂直于EF.
展开全部
证明:
延长AP交EF于点G 延长EP交AB于M,延长FP交AD于N
∵P为正方形ABCD对角线BD上任一点
∴PM=PF,PN=PE
又AMPN为矩形.
∴AN=PM=PF
∵∠EPF=∠BAC=90°
∴△PEF≌△ANP
∴∠NAP = ∠PFE
又∠NPA=∠FPG(对顶角)
∠NAP +∠NPA=90°
∴∠PFE+∠FPG=90°
∴∠PGF=180°-(∠PFE+∠FPG)=90°
∴AP⊥EF
延长AP交EF于点G 延长EP交AB于M,延长FP交AD于N
∵P为正方形ABCD对角线BD上任一点
∴PM=PF,PN=PE
又AMPN为矩形.
∴AN=PM=PF
∵∠EPF=∠BAC=90°
∴△PEF≌△ANP
∴∠NAP = ∠PFE
又∠NPA=∠FPG(对顶角)
∠NAP +∠NPA=90°
∴∠PFE+∠FPG=90°
∴∠PGF=180°-(∠PFE+∠FPG)=90°
∴AP⊥EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我也正想问这个问题···
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询