如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与点A、B重合),连接PD。。。
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)当△APQ为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与...
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)当△APQ为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围;
(3)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示) 展开
(3)连接AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示) 展开
1个回答
展开全部
考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;矩形的性质。
专题:探究型。
分析:(1)假设存在一点P,使点Q与点C重合,再设AP的长为x,利用勾股定理即可用x表示出DP、PC的长,再在Rt△PCD中利用勾股定理即可求出x的值;
(2)连接AC,设BP=x,则AP=m﹣x,由相似三角形的判定定理得出△PBQ∽△ABC,△APD∽△BQP,再根据相似三角形的对应边成比例即可求出BQ的表达式;
(3)连接DQ,把四边形PQCD化为两个直角三角形,再用m表示出PD及CQ的长,利用三角形的面积公式即可解答.
解答:解:(1)存在点P.
假设存在一点P,使点Q与点C重合,如图1所示,设AP的长为x,则BP=10﹣x,
在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2,
在Rt△PBC中,PC2=BC2+PB2,即DP2=42+(10﹣x)2,
在Rt△PCD中,CD2=DP2+PC2,即102=42+x2+42+(10﹣x)2,
解得x=2或8,
故当m=10时,存在点P使得点Q与点C重合,此时AP=2或8;
(2)连接AC,设BP=x,则AP=m﹣x,
∵PQ∥AC,
∴△PBQ∽△ABC,
∴ = ,即 = ①,
∵DP⊥PQ,
∴∠APD+∠BPQ=90°,
∵∠APD+∠ADP=90°,∠BPQ+∠PQB=90°,
∴∠APD=∠BQP,
∴△APD∽△BQP,
∴ = ,即 = ②,
①②联立得,BQ= ;
(3)连接DQ,
设AP=x,由(1)知在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2,
在Rt△PBC中,PC2=BC2+PB2,即DP2=42+(m﹣x)2,
若△PQD为等腰三角形,则42+x2=42+(m﹣x)2,
解得x= ,
∵BQ= ,
∴CQ=4﹣ = ,
∴S四边形DPQC=S△DPQ+S△DCQ,
即S= × × + × ×m= (m>4).
#############################################
http://www.qiujieda.com/math/19711/
图比较大
直接给网址
专题:探究型。
分析:(1)假设存在一点P,使点Q与点C重合,再设AP的长为x,利用勾股定理即可用x表示出DP、PC的长,再在Rt△PCD中利用勾股定理即可求出x的值;
(2)连接AC,设BP=x,则AP=m﹣x,由相似三角形的判定定理得出△PBQ∽△ABC,△APD∽△BQP,再根据相似三角形的对应边成比例即可求出BQ的表达式;
(3)连接DQ,把四边形PQCD化为两个直角三角形,再用m表示出PD及CQ的长,利用三角形的面积公式即可解答.
解答:解:(1)存在点P.
假设存在一点P,使点Q与点C重合,如图1所示,设AP的长为x,则BP=10﹣x,
在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2,
在Rt△PBC中,PC2=BC2+PB2,即DP2=42+(10﹣x)2,
在Rt△PCD中,CD2=DP2+PC2,即102=42+x2+42+(10﹣x)2,
解得x=2或8,
故当m=10时,存在点P使得点Q与点C重合,此时AP=2或8;
(2)连接AC,设BP=x,则AP=m﹣x,
∵PQ∥AC,
∴△PBQ∽△ABC,
∴ = ,即 = ①,
∵DP⊥PQ,
∴∠APD+∠BPQ=90°,
∵∠APD+∠ADP=90°,∠BPQ+∠PQB=90°,
∴∠APD=∠BQP,
∴△APD∽△BQP,
∴ = ,即 = ②,
①②联立得,BQ= ;
(3)连接DQ,
设AP=x,由(1)知在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2,
在Rt△PBC中,PC2=BC2+PB2,即DP2=42+(m﹣x)2,
若△PQD为等腰三角形,则42+x2=42+(m﹣x)2,
解得x= ,
∵BQ= ,
∴CQ=4﹣ = ,
∴S四边形DPQC=S△DPQ+S△DCQ,
即S= × × + × ×m= (m>4).
#############################################
http://www.qiujieda.com/math/19711/
图比较大
直接给网址
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询