3道数列极限题目
1.对任意n∈N,有an=[1+2+2^2+...+2^(n-1)]/[1-t*2^(n-1)],其中t与n无关的实常数,若liman=3t-5,求t的值2.已知数列{a...
1.对任意n∈N,有an=[1+2+2^2+...+2^(n-1)]/[1-t*2^(n-1)],其中t与n无关的实常数,若liman=3t-5,求t的值
2.已知数列{an},a4=28且满足[a(n+1)+an-1]/[a(n+1)-an+1]=n
1)求a1,a2,a3,及{an}的通项
2)设{bn}为等差数列且bn=an/(n+c),其中c为不等于零的常数,若Tn=b1+b2+...+bn,求lim(1/T1+1/T2+...+1/Tn)
3.已知无穷等比数列1,1/2,1/2^2,...1/2^(n-1),...
1)在其中取值,作为一个首相为1/2^m的无穷等比数列,求这个数列各项和的取值范围
2)在其中取值,作一个无穷等比数列,其各项和S满足4/61<S<1/3,求S
要过程- -麻烦你们了,
比较急
哇靠,我都搞到100了,到底有没有强力的数学高手阿 展开
2.已知数列{an},a4=28且满足[a(n+1)+an-1]/[a(n+1)-an+1]=n
1)求a1,a2,a3,及{an}的通项
2)设{bn}为等差数列且bn=an/(n+c),其中c为不等于零的常数,若Tn=b1+b2+...+bn,求lim(1/T1+1/T2+...+1/Tn)
3.已知无穷等比数列1,1/2,1/2^2,...1/2^(n-1),...
1)在其中取值,作为一个首相为1/2^m的无穷等比数列,求这个数列各项和的取值范围
2)在其中取值,作一个无穷等比数列,其各项和S满足4/61<S<1/3,求S
要过程- -麻烦你们了,
比较急
哇靠,我都搞到100了,到底有没有强力的数学高手阿 展开
3个回答
展开全部
1)分子是等比数列,由等比数列前n项和有:S[n]=(a[1]-qa[n])/(1-q)=(1-2^n)/(1-2)=2^n-1
所以a[n]=(2^n-1)/[1-t*2^(n-1)]
取极限,并且分子分母同时除以2^n,有lim a[n] = lim (1-1/2^n) / (1/2^n - t/2) =1/(-t/2)= - 2/t
因为 lim a[n] =3t-5,解得t=1 或t =2/3
2)将[a[n+1]+a[n]-1]/[a[n+1]-a[n]+1]=n化成递推形式:
a[n+1] = (n+1)/(n-1) * (a[n] -1)
两边减去(n+1),化简得:
a[n+1] - (n+1) = (n+1)/(n-1) * (a[n] -1) - (n+1) =(n+1)/(n-1) * (a[n] - n)
那么(a[n] - n) = n/(n-2) *(a[n-1] -(n-1))
一项一项推:a[n] - n =n/(n-2) *(a[n-1] - (n-1)) =n/(n-2) * (n-1)/(n-3) *(a[n-2] - (n-2))=n/(n-2) *……* 5/3 *(a[4] - 4)
所以:a[n] - n = (n-1)n/12 * (a[4] -4)
a[n] = (2n-1)n
所以a[1]= 1,a[2]=6,a[3]=15
(2) 等差数列形式是【k+nd】,设b[n]=k+nd,有:
(2n-1)n/(n+c) = k +nd
即2n^2 - n=d*n^2+cdn+kn+kc
:d=2,k=0,c= -1/2
即b[n]= 2n
所以T[n]=(n+1)n
1/T[n] = 1/[n(n+1)] = 1/n - 1/(n+1)
lim(1/T1+1/T2+...+1/Tn) = lim [1/1 - 1/(n+1)] = 1
3)S[n]= (a[1] - a[1]q^n)/(1-q)
如果 |q| <1 ,那么lim q^n =0,lim S[n] = a[1]/(1-q)
(1)如果取首相为1/2^m , q=1/2 的无穷等比数列,
S = 1/2^m / (1-1/2) = (1/2) ^(m-1)
可以知道 0<S<=1
(2) 4/61 < S <1/3
4/61 < (1/2)^(m-1) < 1/3
i) 4/61 < (1/2)^(m-1),
61/4 > 2^(m-1)
61/2 > 2^m
5 > m
ii) (1/2)^(m-1) < 1/3 2^(m-1) > 3
2^m >6
m>=3
所以m=3 或 4
S= 1/4 或 1/8
所以a[n]=(2^n-1)/[1-t*2^(n-1)]
取极限,并且分子分母同时除以2^n,有lim a[n] = lim (1-1/2^n) / (1/2^n - t/2) =1/(-t/2)= - 2/t
因为 lim a[n] =3t-5,解得t=1 或t =2/3
2)将[a[n+1]+a[n]-1]/[a[n+1]-a[n]+1]=n化成递推形式:
a[n+1] = (n+1)/(n-1) * (a[n] -1)
两边减去(n+1),化简得:
a[n+1] - (n+1) = (n+1)/(n-1) * (a[n] -1) - (n+1) =(n+1)/(n-1) * (a[n] - n)
那么(a[n] - n) = n/(n-2) *(a[n-1] -(n-1))
一项一项推:a[n] - n =n/(n-2) *(a[n-1] - (n-1)) =n/(n-2) * (n-1)/(n-3) *(a[n-2] - (n-2))=n/(n-2) *……* 5/3 *(a[4] - 4)
所以:a[n] - n = (n-1)n/12 * (a[4] -4)
a[n] = (2n-1)n
所以a[1]= 1,a[2]=6,a[3]=15
(2) 等差数列形式是【k+nd】,设b[n]=k+nd,有:
(2n-1)n/(n+c) = k +nd
即2n^2 - n=d*n^2+cdn+kn+kc
:d=2,k=0,c= -1/2
即b[n]= 2n
所以T[n]=(n+1)n
1/T[n] = 1/[n(n+1)] = 1/n - 1/(n+1)
lim(1/T1+1/T2+...+1/Tn) = lim [1/1 - 1/(n+1)] = 1
3)S[n]= (a[1] - a[1]q^n)/(1-q)
如果 |q| <1 ,那么lim q^n =0,lim S[n] = a[1]/(1-q)
(1)如果取首相为1/2^m , q=1/2 的无穷等比数列,
S = 1/2^m / (1-1/2) = (1/2) ^(m-1)
可以知道 0<S<=1
(2) 4/61 < S <1/3
4/61 < (1/2)^(m-1) < 1/3
i) 4/61 < (1/2)^(m-1),
61/4 > 2^(m-1)
61/2 > 2^m
5 > m
ii) (1/2)^(m-1) < 1/3 2^(m-1) > 3
2^m >6
m>=3
所以m=3 或 4
S= 1/4 或 1/8
展开全部
下标用[]表示
1)分子是等比数列,由等比数列前n项和有:S[n]=(a[1]-qa[n])/(1-q)=(1-2^n)/(1-2)=2^n-1
所以a[n]=(2^n-1)/[1-t*2^(n-1)]
取极限,并且分子分母同时除以2^n,有lim a[n] = lim (1-1/2^n) / (1/2^n - t/2) =1/(-t/2)= - 2/t
因为 lim a[n] =3t-5,解得t=1 或t =2/3
2)将[a[n+1]+a[n]-1]/[a[n+1]-a[n]+1]=n化成递推形式:
a[n+1] = (n+1)/(n-1) * (a[n] -1)
两边减去(n+1),化简得:
a[n+1] - (n+1) = (n+1)/(n-1) * (a[n] -1) - (n+1) =(n+1)/(n-1) * (a[n] - n)
那么(a[n] - n) = n/(n-2) *(a[n-1] -(n-1))
一项一项推:a[n] - n =n/(n-2) *(a[n-1] - (n-1)) =n/(n-2) * (n-1)/(n-3) *(a[n-2] - (n-2))=n/(n-2) *……* 5/3 *(a[4] - 4)
由于错位相消,所以:a[n] - n = (n-1)n/12 * (a[4] -4)
a[n] = (2n-1)n
所以a[1]= 1,a[2]=6,a[3]=15
(2) 等差数列形式是【k+nd】,设b[n]=k+nd,有:
(2n-1)n/(n+c) = k +nd
即2n^2 - n=d*n^2+cdn+kn+kc
对比系数可得:d=2,k=0,c= -1/2
即b[n]= 2n
所以T[n]=(n+1)n
1/T[n] = 1/[n(n+1)] = 1/n - 1/(n+1)
lim(1/T1+1/T2+...+1/Tn) = lim [1/1 - 1/(n+1)] = 1
3)等比数列前n项和,S[n]= (a[1] - a[1]q^n)/(1-q)
如果 |q| <1 ,那么lim q^n =0,lim S[n] = a[1]/(1-q)
(1)如果取首相为1/2^m , q=1/2 的无穷等比数列,
S = 1/2^m / (1-1/2) = (1/2) ^(m-1)
可以知道 0<S<=1
(2) 4/61 < S <1/3
4/61 < (1/2)^(m-1) < 1/3
i) 4/61 < (1/2)^(m-1),两边倒数,
61/4 > 2^(m-1)
61/2 > 2^m
5 > m
ii) (1/2)^(m-1) < 1/3 ,两边倒数,
2^(m-1) > 3
2^m >6
m>=3
所以m=3 或 4
S= 1/4 或 1/8
1)分子是等比数列,由等比数列前n项和有:S[n]=(a[1]-qa[n])/(1-q)=(1-2^n)/(1-2)=2^n-1
所以a[n]=(2^n-1)/[1-t*2^(n-1)]
取极限,并且分子分母同时除以2^n,有lim a[n] = lim (1-1/2^n) / (1/2^n - t/2) =1/(-t/2)= - 2/t
因为 lim a[n] =3t-5,解得t=1 或t =2/3
2)将[a[n+1]+a[n]-1]/[a[n+1]-a[n]+1]=n化成递推形式:
a[n+1] = (n+1)/(n-1) * (a[n] -1)
两边减去(n+1),化简得:
a[n+1] - (n+1) = (n+1)/(n-1) * (a[n] -1) - (n+1) =(n+1)/(n-1) * (a[n] - n)
那么(a[n] - n) = n/(n-2) *(a[n-1] -(n-1))
一项一项推:a[n] - n =n/(n-2) *(a[n-1] - (n-1)) =n/(n-2) * (n-1)/(n-3) *(a[n-2] - (n-2))=n/(n-2) *……* 5/3 *(a[4] - 4)
由于错位相消,所以:a[n] - n = (n-1)n/12 * (a[4] -4)
a[n] = (2n-1)n
所以a[1]= 1,a[2]=6,a[3]=15
(2) 等差数列形式是【k+nd】,设b[n]=k+nd,有:
(2n-1)n/(n+c) = k +nd
即2n^2 - n=d*n^2+cdn+kn+kc
对比系数可得:d=2,k=0,c= -1/2
即b[n]= 2n
所以T[n]=(n+1)n
1/T[n] = 1/[n(n+1)] = 1/n - 1/(n+1)
lim(1/T1+1/T2+...+1/Tn) = lim [1/1 - 1/(n+1)] = 1
3)等比数列前n项和,S[n]= (a[1] - a[1]q^n)/(1-q)
如果 |q| <1 ,那么lim q^n =0,lim S[n] = a[1]/(1-q)
(1)如果取首相为1/2^m , q=1/2 的无穷等比数列,
S = 1/2^m / (1-1/2) = (1/2) ^(m-1)
可以知道 0<S<=1
(2) 4/61 < S <1/3
4/61 < (1/2)^(m-1) < 1/3
i) 4/61 < (1/2)^(m-1),两边倒数,
61/4 > 2^(m-1)
61/2 > 2^m
5 > m
ii) (1/2)^(m-1) < 1/3 ,两边倒数,
2^(m-1) > 3
2^m >6
m>=3
所以m=3 或 4
S= 1/4 或 1/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1求和,比值2^n-1/1-t2^(n-1)=3t-5 t=1. -1(舍)
2a1=1,a2=6,a3=15,an=2n方-n bn是等差列,求得c=-1/2 bn=2n,Tn=n(n+1) lim=1
3 1) 取1/2^m做首项, 各项和????总和吧? 1/2^m <S<1/2^(m-1)
2)因为4/61<S<1/3,所以求S=1/2^m 六十一分子四约等于0.065 ,那个约等于0.33333,所以m=4,所以S=15/8
2a1=1,a2=6,a3=15,an=2n方-n bn是等差列,求得c=-1/2 bn=2n,Tn=n(n+1) lim=1
3 1) 取1/2^m做首项, 各项和????总和吧? 1/2^m <S<1/2^(m-1)
2)因为4/61<S<1/3,所以求S=1/2^m 六十一分子四约等于0.065 ,那个约等于0.33333,所以m=4,所以S=15/8
追问
详细过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询